|本期目录/Table of Contents|

[1]许晓文,孙后环,华广胜,等.基于遗传算法的风电机组叶片参数优化设计[J].南京工业大学学报(自然科学版),2019,41(04):508-513.[doi:10.3969/j.issn.1671-7627.2019.04.017]
 XU Xiaowen,SUN Houhuan,HUA Guangsheng,et al.Optimization design of wind turbine blade parameters by genetic algorithm[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2019,41(04):508-513.[doi:10.3969/j.issn.1671-7627.2019.04.017]
点击复制

基于遗传算法的风电机组叶片参数优化设计()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
41
期数:
2019年04期
页码:
508-513
栏目:
出版日期:
2019-07-10

文章信息/Info

Title:
Optimization design of wind turbine blade parameters by genetic algorithm
文章编号:
1671-7627(2019)04-0508-06
作者:
许晓文1孙后环1华广胜2吴旭龙1
1. 南京工业大学 机械与动力工程学院,江苏 南京 211800; 2. 中国合格评定国家认可委员会,北京 100010
Author(s):
XU Xiaowen1SUN Houhuan1HUA Guangsheng2WU Xulong1
1. School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, China; 2. China National Accreditation Service for Conformity Assessment, Beijing 100010, China
关键词:
风电机组 遗传算法 优化设计 模态分析
Keywords:
wind turbine genetic algorithm optimization design modal analysis
分类号:
TK83
DOI:
10.3969/j.issn.1671-7627.2019.04.017
文献标志码:
A
摘要:
针对某2 MW大型风电机组叶片进行气动性能分析,根据给出的叶片基本参数,以风能利用系数最大为优化目标,基于遗传算法对风电机组叶片的参数进行全局最优搜索,并对遗传算法和Wilson设计法的优化结果进行数据分析,得到了风能利用效率更好的叶片外形参数。根据叶片外形参数进行建模,应用ANSYS软件对叶片进行模态分析,研究了叶片前六阶模态下的响应情况,通过数值分析确定了叶片的最佳气动参数,为风电机组叶片的优化设计提供有效的方法。
Abstract:
From the aerodynamic performance analysis of the blade of a 2 MW large wind turbine, the target of the maximum wind energy utilization coefficient was optimized with the basic parameters of the blade, and the global optimization was carried out by genetic algorithm. The data analysis for the optimal results of the genetic algorithm and the Wilson design method was investigated, and leaf geometric shape design parameters were obtained with better wind power utilization efficiency. Based on the blade profile parameters, the ANSYS software was used to analyze the blade mode, and response of the blade in the 6 order mode was considered. The optimal aerodynamic parameters of the blade were determined from the numerical analysis results, which provided an optimal design of the wind turbine blade.

参考文献/References:

[1] 周健,王艳红,苗强.浅谈清洁能源的可再生利用[J].新农村,2012(12):175.
[2] 赵旭.基于绿色电价计算方法的火电与清洁能源电力的经济性比较分析[D].上海:上海交通大学,2014.
[3] KIM B,KIM W,BAE S,et al.Aerodynamic design and performance
   analysis of multi-MW class wind turbineblade[J].Journal of Mechanical Science and Technology,2011,25(8):1995.
[4] WANG X D,SHEN W Z,ZHU W Z,et al.Shape optimization of wind turbine blades [J].Wind Energy,2009,12(8):781.
[5] XU G P,LAKSHMI L N.Computational study of horizontal axis wind turbines [J].Journal of Solar Energy Engineering,2000,122(1):35.
[6] 于静梅,刘盼盼,于妍鸿,等.基于IABC算法的风力机叶片参数优化[J].现代制造工程,2015(11):6.
[7] 张苏,宋林辉,张慧玲,等.风力机框筒式埋深基础的模型试验[J].南京工业大学学报(自然科学版),2011,33(5):94.
[8] LIU X W,WANG L,TANG X Z.Optimized linearization of chord and twist angle profiles for fixed-pitch fixed-speed wind turbine blades [J].Renewable Energy,2013,57(3):111.
[9] MAKI K,SBRAGIO R,VLAHOPOULOS N.System design of a wind turbine using a multi-level optimization approach [J].Renewable Enoiergy,2012,43:101.
[10] 李本立,吕波波.轴流通风机叶片设计的新方法研究[J].风机技术,2017,59(4):27.

相似文献/References:

[1]汤明敏,王华,黄筱调.基于多特征参量的回转支承智能健康状态评估[J].南京工业大学学报(自然科学版),2014,36(02):101.[doi:10.3969/j.issn.1671-7627.2014.02.017]
 TANG Mingmin,WANG Hua,HUANG Xiaodiao.Intelligent health condition assessment on slewing bearing based on multiple characteristic parameters[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2014,36(04):101.[doi:10.3969/j.issn.1671-7627.2014.02.017]
[2]丁爽,黄筱调,于春建,等.自由曲面加工全局干涉检验与刀位修正[J].南京工业大学学报(自然科学版),2015,37(02):59.[doi:10.3969/j.issn.1671-7627.2015.02.012]
 DING Shuang,HUANG Xiaodiao,YU Chunjian,et al.Global tool interference detection and tool position correction in free-form surface machining[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(04):59.[doi:10.3969/j.issn.1671-7627.2015.02.012]
[3]周璐璐,蒋军成,潘勇.基于定量构效关系预测烃类物质及其衍生物的过热极限温度[J].南京工业大学学报(自然科学版),2017,39(04):138.[doi:10.3969/j.issn.1671-7627.2017.04.022]
 ZHOU Lulu,JIANG Juncheng,PAN Yong.Predicting the superheat limit temperature of hydrocarbons and derivatives of hydrocarbons based on the quantitative structure-property relation theory[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2017,39(04):138.[doi:10.3969/j.issn.1671-7627.2017.04.022]

备注/Memo

备注/Memo:
收稿日期:2018-05-31
基金项目:江苏省“六大人才高峰”高层次人才项目(2012-ZBZZ-047)
作者简介:许晓文(1992—),男,E-mail:895988649@qq.com; 孙后环(联系人),教授,E-mail:sunhouhuan@163.com.
引用本文:许晓文,孙后环,华广胜,等.基于遗传算法的风电机组叶片参数优化设计[J].南京工业大学学报(自然科学版),2019,41(4):508-513..
更新日期/Last Update: 2019-07-20