|本期目录/Table of Contents|

[1]袁孝蓓,李俊才,张鹏,等.不同地质条件下盾构法施工沉降影响[J].南京工业大学学报(自然科学版),2019,41(04):485-492.[doi:10.3969/j.issn.1671-7627.2019.04.014]
 YUAN Xiaobei,LI Juncai,ZHANG Peng,et al.Influence of settlement range caused by shield method under different geological conditions[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2019,41(04):485-492.[doi:10.3969/j.issn.1671-7627.2019.04.014]
点击复制

不同地质条件下盾构法施工沉降影响()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
41
期数:
2019年04期
页码:
485-492
栏目:
出版日期:
2019-07-10

文章信息/Info

Title:
Influence of settlement range caused by shield method under different geological conditions
文章编号:
1671-7627(2019)04-0485-08
作者:
袁孝蓓李俊才张鹏戴屹立
南京工业大学 交通运输工程学院,江苏 南京 210009
Author(s):
YUAN XiaobeiLI JuncaiZHANG PengDAI Yili
College of Transportation Science & Engineering,Nanjing Tech University, Nanjing 210009, China
关键词:
盾构法 地貌单元 Peck公式 沉降槽
Keywords:
shield method geomorphic unit Peck formula settlement
分类号:
U455.43
DOI:
10.3969/j.issn.1671-7627.2019.04.014
文献标志码:
A
摘要:
为研究不同地质条件下盾构法施工引起的地表沉降影响范围,对南京地铁四号线龙江站—云南路站区间盾构施工期间现场有效监测点的实测数据进行Peck公式拟合,通过分析典型沉降槽曲线特征,并统计拟合所得的大量沉降槽宽度系数及其控制参数,获得了不同地貌单元的沉降槽形状特征及沉降槽宽度参数经验值,对不同地质条件下的沉降影响范围作出了预测。研究结果表明:长江漫滩地貌单元沉降槽宽度平均值为12 m,计算沉降槽宽度时沉降槽宽度参数K值可取0.381; 秦淮河古河道地貌单元沉降槽宽度平均值为11.3 m,K值可取0.312 2; 长江一级阶地地貌单元沉降槽宽度为9.96 m左右,K值可取0.303 2。
Abstract:
Study the ground settlement range caused by shield method under different geological conditions, the measured data of site effective monitoring point during the shield construction period of Nanjing metro line 4 from Longjiang Station to Yunnan Road Station were fitting by Peck formula. The settlement tank form feature of different geomorphic units was analyzed trough the typical settlement curves. Statistic fitting from the large amount settlement tank width parameters and controlling parameters suggested the empirical value of settlement tank width parameter. The settlement tank average value was 12 m of the Yangtze River floodplain when settlement tank width value K was 0.381, 11.3 m of ancient Qinhuai River area when K was 0.312 2, and around 9.96 m of the Yangtze River first grade terrace when K was 0.303 2.

参考文献/References:

[1] 罗国煜,李晓昭,张春华,等.南京地质环境的基本特征和几个主要环境岩土工程问题[J].高校地质学报,1998,4(2):189.
[2] 刘永青.南京市区地基土的工程地质区划[J].水文地质工程地质,1994,21(3):49.
[3] 邢崴崴,阎长虹.南京市地铁工程环境地质评价[J].工程地质学报,2004,12(3):298.
[4] 姜忻良,赵志民,李园.隧道开挖引起土层沉降槽曲线形态的分析与计算[J].岩土力学,2004,25(10):1542.
[5] 朱启银,叶冠林,王建华,等.软土地层盾构隧道长期沉降与施工因素初探[J].岩土工程学报,2010,32(增刊2):509.
[6] KASPER T,MESCHKE G.On the influence of face pressure,grouting pressure and TBM design in soft ground tunnelling[J].
  Tunnelling and Underground Space Technology,2006,21(2):160.
[7] 朱才辉,李宁.地铁施工诱发地表最大沉降量估算及规律分析[J].岩石力学与工程学报,2017,36(增刊1):3543.
[8] PECK R B.Deep excavations and tunnelling in soft ground[C]//Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering.Mexico:[s.n.],1969:225.
[9] O’REILLY M P,NEW B M.Settlements above tunnels in the United Kingdom-their magnitude and prediction[C]//Proceeding Tunnelling’82.London:Institution of Mining and Metallurgy,1982:173.
[10] 李忠超,陈仁朋,孟凡衍,等.软黏土中盾构掘进地层变形与掘进参数关系[J].浙江大学学报(工学版),2015,49(7):1268.
[11] 璩继立,葛修润.软土地区盾构隧道施工沉降槽的特征分析[J].工业建筑,2005,35(1):42.
[12] 韩昌瑞,贺光宗,王贵宾.双线并行隧道施工中影响地表沉降的因素分析[J].岩土力学,2011,32(增刊2):484.

相似文献/References:

[1]贺磊,方坤,高俊强.人工修复盾构姿态错误的测量方法与精度探讨[J].南京工业大学学报(自然科学版),2012,34(01):109.
 HE Lei,FANG Kun,GAO Junqiang.Investigation on measurement method and accuracy of artificial restoration for shield attitude[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2012,34(04):109.

备注/Memo

备注/Memo:
收稿日期:2018-02-06
作者简介:袁孝蓓(1993—),女,E-mail:307784241@qq.com; 李俊才(联系人),教授,E-mail:1452643191@qq.com.
引用本文:袁孝蓓,李俊才,张鹏,等.不同地质条件下盾构法施工沉降影响[J].南京工业大学学报(自然科学版),2019,41(4):485-492..
更新日期/Last Update: 2019-07-20