|本期目录/Table of Contents|

[1]刘韦,文辉,江耀,等.基于介孔氧化硅的光响应固体碱催化剂的构筑[J].南京工业大学学报(自然科学版),2019,41(04):416-422.[doi:10.3969/j.issn.1671-7627.2019.04.003]
 LIU Wei,WEN Hui,JIANG Yao,et al.Construction of photoregulated solid base catalysts based on mesoporous silica[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2019,41(04):416-422.[doi:10.3969/j.issn.1671-7627.2019.04.003]
点击复制

基于介孔氧化硅的光响应固体碱催化剂的构筑()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
41
期数:
2019年04期
页码:
416-422
栏目:
出版日期:
2019-07-10

文章信息/Info

Title:
Construction of photoregulated solid base catalysts based on mesoporous silica
文章编号:
1671-7627(2019)04-0416-07
作者:
刘韦文辉江耀朱丽刘晓勤孙林兵
南京工业大学 化工学院,江苏 南京 211800
Author(s):
LIU WeiWEN HuiJIANG YaoZHU LiLIU XiaoqinSUN Linbing
College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
关键词:
介孔氧化硅 氨基功能化 光响应基团 固体碱 Knoevenagel缩合反应
Keywords:
mesoporous silica amino functionalization photo-responsive groups solid base Knoevenagel condensation reaction
分类号:
O643.36
DOI:
10.3969/j.issn.1671-7627.2019.04.003
文献标志码:
A
摘要:
采用直接合成法将氨基作为碱性位引入介孔氧化硅MCM-41,进而通过后嫁接法在载体孔口处引入光响应基团4-(3-三乙氧基甲硅烷基丙基脲基)偶氮苯(AB-TPI),制备智能光响应固体碱催化剂Azo-NH2-MS。所制备的固体碱催化剂可以有效地通过可见光/紫外光的照射实现对催化反应的控制。利用核磁共振氢谱仪(1H NMR)、X线粉末衍射仪(XRD)、N2吸附和透射电子显微镜(TEM)等对所制备的MCM-41、氨基功能化的MCM-41和Azo-NH2-MS进行表征。结果表明:MCM-41以及功能化后的材料均显示出较好的介孔结构; AB-TPI负载量为3.9%的Azo-NH2-MS在紫外光照射后,通过有效碳数法计算反应物的转化率为68.0%,在可见光照射后的转化率为42.0%,该催化剂在不同光照条件下的转化率差值百分比为61.4%,表现出良好的光响应催化性能。
Abstract:
Direct synthesis was used to disperse the amino groups as basic sites on the mesoporous silica MCM-41. The catalyst was prepared by grafting the photo-responsive groups 4-(3-triethorxy silyl propyl urea)azobenzene(AB-TPI)at the pores of the support. The prepared solid base catalyst could effectively control the rate of the catalytic reaction by irradiation with visible light/ultraviolet light. The prepared MCM-41, amino-functionalized MCM-41 and photo-responsive solid base catalyst Azo-NH2-MS were characterized by nuclear magnetic resonance hydrogen spectroscopy(1H NMR), X-ray diffractometer(XRD), nitrogen adsorption and transmission electron microscope(TEM). Results showed that the MCM-41 and functionalized materials all exhibited a better mesoporous structure. The photo-responsive solid base catalyst Azo-NH2-MS with 3.9% AB-TPI was irradiated by ultraviolet light, the conversion rate of the reactants was calculated to be 68.0% by effective carbon number method, and the conversion rate after visible light was 42.0%, and the conversion percentage difference under different light conditions was 61.4%. It showed a good light-responsive catalytic performance.

参考文献/References:

[1] ZHANG X,LI X Q,DU Z,et al.Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation[J].Nature Communications,2017,8:1.
[2] WANG Y J,LIU Q B,LEI J,et al.A two-dimensional multiphysics coupling model of a middle and low temperature solar receiver/reactor for methanol decomposition[J].Energies,2017,10(11):1705.
[3] LAM S S,WAN MAHARI W A,JUSOH A,et al.Pyrolysis using microwave absorbents as reaction bed:an improved approach to transform used frying oil into biofuel product with desirable properties[J].Journal of Cleaner Production,2017,147:263.
[4] BEQUETTE B W.Nonlinear control of chemical processes:a review[J].Industrial and Engineering Chemistry Research,1991,30(7):1391.
[5] SUN D,KHAN F M,SIMAKOV D S A.Heat removal and catalyst deactivation in a sabatier reactor for chemical fixation of CO2:simulation-based analysis[J].Chemical Engineering Journal,2017,329:165.
[6] BERDOUZI F,VILLEMUR C,OLIVIER-MAGET N,et al.Dynamic simulation for risk analysis:application to an exothermic reaction[J].Process Safety and Environmental Protection,2018,113:149.
[7] OKHRIMENKO L,FAVERGEON L,JOHANNES K,et al.Thermodynamic study of MgSO4-H2O system dehydration at low pressure in view of heat storage[J].Thermochimica Acta,2017,656:135.
[8] LI D,LIU N,GAO Y,et al.Thermosensitive polymer stabilized core-shell AuNR@Ag nanostructures as "smart" recyclable catalyst[J].Journal of Nanoparticle Research,2017,19(11):377.
[9] BOCK C,PAQUET C,COUILLARD M,et al.Size-selected synthesis of PtRu nano-catalysts:reaction and size control mechanism[J].Journal of the American Chemical Society,2004,126(25):8028.
[10] KAMETANI N,IZUMI T,MIYAKE S,et al.Temperature behavior of exothermic reaction of Al/Ni multilayer powder materials based on cold-rolling and pulverizing method[J].Journal Applied Physics,2017,56(6):7.
[11] NI L,MEBARKI A,JIANG J C,et al.Thermal risk in batch reactors:theoretical framework for runaway and accident[J].Journal of Loss Prevention in the Process Industries,2016,43:75.
[12] GISBERT-GARZAR N M,MANZANO M,VALLET-REG M.PH-responsive mesoporous silica and carbon nanoparticles for drug delivery[J].Bioengineering,2017,4(4):3.
[13] JIANG Y,SHAN S F,LIU W,et al.Rational design of thermo-responsive adsorbents:demand-oriented active sites for the adsorption of dyes[J].Chemical Communications,2017,53(69):9538.
[14] TAN P,JIANG Y,LIU X Q,et al.Magnetically responsive core-shell Fe3O4@C adsorbents for efficient capture of aromatic sulfur and nitrogen compounds[J].ACS Sustainable Chemistry & Engineering,2016,4(4):2223.
[15] QU D H,WANG Q C,ZHANG Q W,et al.Photoresponsive host-guest functional systems[J].Chemical Reviews,2015,115(15):7543.
[16] YANAI N,UEMURA T,INOUE M,et al.Guest-to-host transmission of structural changes for stimuli-responsive adsorption property[J].Journal of the American Chemical Society,2012,134(10):4501.
[17] WEN J,YANG K,LIU F,et al.Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems[J].Chemical Society Reviews,2017,46(19):6024.
[18] LÉONARD E,MANGIN F,VILLETTE C,et al.Azobenzenes and catalysis[J].Catalysis Science & Technology,2016,6(2):379.
[19] LYNDON R,KONSTAS K,LADEWIG B P,et al.Dynamic photo-switching in metal-organic frameworks as a route to low-energy carbon dioxide capture and release[J].Angewandte Chemie International Edition,2013,52(13):3695.
[20] KUNDU P K,SAMANTA D,LEIZROWICE R,et al.Light-controlled self-assembly of non-photoresponsive nanoparticles[J].Nature Chemistry,2015,7(8):646.
[21] KOBATAKE S,TAKAMI S,MUTO H,et al.Rapid and reversible shape changes of molecular crystals on photoirradiation[J].Nature,2007,446:778.
[22] HUANG N,DING X S,KIM J,et al.A Photoresponsive smart covalent organic framework[J].Angewandte Chemie International Edition,2015,54(30):8704.
[23] ZHAO L H,LOY D A,SHEA K J.Photodeformable spherical hybrid nanoparticles[J].Journal of the American Chemical Society,128(44):14250.
[24] 曾崇余 吴林.环己烷催化氧化制环己酮的MCM-41催化剂研究[J].南京工业大学学报(自然科学版),2007,29(4):40.
[25] PARIDA K M,RATHD.Amine functionalized MCM-41:an active and reusable catalyst for Knoevenagel condensation reaction[J].Journal of Molecular Catalysis A( Chemical),2009,310(1/2):93.
[26] LIU N G,CHEN Z,DUNPHY D R,et al.Photoresponsive nanocomposite formed by self-assembly of an azobenzene-modified silane[J].Angewandte Chemie International Edition,2003,42(15):1731.
[27] CHENG L,JIANG Y,YAN N,et al.Smart adsorbents with photoregulated molecular gates for both selective adsorption and efficient regeneration[J].ACS Applied Materials & Interfaces,2016,8(35):23404.

备注/Memo

备注/Memo:
收稿日期:2018-05-18
基金项目:国家自然科学基金(21722606, 21576137,21676138); 江苏高校优势学科建设工程
作者简介:刘韦(1993—),女,E-mail:1225349928@njtech.edu.cn; 孙林兵(联系人),教授,E-mail:lbsun@njtech.edu.cn.
引用本文:刘韦,文辉,江耀,等.基于介孔氧化硅的光响应固体碱催化剂的构筑[J].南京工业大学学报(自然科学版),2019,41(4):416-422..
更新日期/Last Update: 2019-07-20