|本期目录/Table of Contents|

[1]陈浩,陈长林.LiH2PO4改性对铂钨铝催化剂的影响[J].南京工业大学学报(自然科学版),2019,41(03):278-284.[doi:10.3969/j.issn.1671-7627.2019.03.002]
 CHEN Hao,CHEN Changlin.Effects of LiH2PO4 modification on platinum supported tungsten-aluminum composite oxide catalysts[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2019,41(03):278-284.[doi:10.3969/j.issn.1671-7627.2019.03.002]
点击复制

LiH2PO4改性对铂钨铝催化剂的影响()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
41
期数:
2019年03期
页码:
278-284
栏目:
出版日期:
2019-06-28

文章信息/Info

Title:
Effects of LiH2PO4 modification on platinum supported tungsten-aluminum composite oxide catalysts
文章编号:
1671-7627(2019)03-0278-07
作者:
陈浩陈长林
南京工业大学 化工学院 材料化学工程国家重点实验室,江苏 南京 211800
Author(s):
CHEN Hao CHEN Changlin
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
关键词:
铂钨铝催化剂 LiH2PO4 甘油 13-丙二醇
Keywords:
platinum supported tungsten-aluminum composite oxide catalysts LiH2PO4 glycerol
分类号:
O643
DOI:
10.3969/j.issn.1671-7627.2019.03.002
文献标志码:
A
摘要:
采用浸渍-焙烧法制备不同用量LiH2PO4改性的铂钨铝催化剂(Pt-W/Al),通过X线衍射(XRD)、H2程序升温还原(H2-TPR)、CO脉冲吸附、H2程序升温脱附(H2-TPD)和NH3程序升温脱附(NH3-TPD)方法对催化剂进行表征。采用固定床反应器考察催化剂催化甘油氢解制1,3-丙二醇的性能。结果表明:一定量LiH2PO4的引入对Pt-W/Al的晶相结构影响不大,但会在催化剂表面形成少量无定形磷酸铝; 一定量LiH2PO4的引入,有利于增大Pt-W/Al表面Pt的分散度,提高催化剂的H2吸附性能,且在不影响催化剂总酸量的情况下,使强酸量减少,弱酸量增多; LiH2PO4的引入提高了Pt-W/Al催化甘油氢解的转化率和生成1,3-丙二醇的选择性,在引入LiH2PO4的用量为3%时,甘油转化率达到79.8%,1,3-丙二醇的选择性达到50.6%,而过量LiH2PO4的引入对其催化性能的进一步提升不明显。
Abstract:
A series of catalysts for platinum supported tungsten-aluminum composite oxide(Pt-W/Al)modified with LiH2PO4 were prepared via impregnation-calcinations. The physical-chemical properties of catalysts were characterized by X-ray diffraction(XRD), H2 temperature programmed reduction(H2-TPR), CO pulse adsorption, H2 temperature programmed desorption(H2-TPD)and NH3 temperature programmed desorption(NH3-TPD). The performance for glycerol hydrogenolysis to 1,3-propanediol over the prepared catalysts was investigated in a fixed-bed continuous-flow reactor. The modified catalysts with an appropriate amount of LiH2PO4 had little effect in the crystal structure. However, a certain amount of amorphous aluminum phosphate would form on the surface. LiH2PO4 could improve the dispersion of platinum in the catalysts and increase the hydrogen adsorption capacity of the catalysts. LiH2PO4 had little effect on the total acid of catalysts, but it could decrease the strong acid content and increase the weak acid one. An appropriate amount of LiH2PO4 could improve the conversion of glycerol and the selectivity of 1,3-propanediol. Pt-W/Al catalysts with 3% content of LiH2PO4 would improve conversion of glycerol to 79.8% and the yield of 1,3-propanediol to 50.6%. However, the introduction of excessive LiH2PO4 could not to further enhance the catalytic performance obviously.

参考文献/References:

[1] 张丽.我国1,3-丙二醇-聚对苯二甲酸丙二醇酯产业链发展形势[J].化学工业,2014,32(6):7.
[2] ZENG H,ZHU Y,FANG B S.Process scaleup and techno-economic analysis on hydroesterification of ethylene oxide technology for 1,3-propanediol production[J].Journal of Zhejiang University(Engineering Science),2013,47(3):540.
[3] ZENG H,FANG B,QU Y.Process simulation and techno-economic analysis on hydration and hydrogenation technology of acrolein for 1,3-propanediol production[J].The Chinese Journal of Process Engineering,2013,13(4):626.
[4] TABAH B,VARVAK A,PULIDINDI I N,et al.Production of 1,3-propanediol from glycerol via fermentation by Saccharomyces cerevisiae[J].Green Chemistry,2016,18(17):4657.
[5] NAKAGAWA Y,TAMRURA M,TOMISHIGE K.Catalytic materials for the hydrogenolysis of glycerol to 1,3-propanediol[J].Journal of Materials Chemistry A,2014,2(19):6688.
[6] BAGHERI S,JULKAPLI N M,YEHYE W A.Catalytic conversion of biodiesel derived raw glycerol to value added products[J].Renewable and Sustainable Energy Reviews,2015,41:113.
[7] CHIA M,PAGÁN-TORRES Y J,HIBBITTS D,et al.Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts[J].Journal of the American Chemical Society,2011,133(32):12675.
[8] ARUNDHATHI R,MIZUGAKI T,MITSUDOME T,et al.Highly selective hydrogenolysis of glycerol to 1,3-propanediol over a boehmite-supported platinum/tungsten catalyst[J].ChemSusChem,2013,6(8):1345.
[9] LI G,LIU Y,TANG Z,et al.Effects of rehydration of alumina on its structural properties,surface acidity,and HDN activity of quinoline[J].Applied Catalysis A(General),2012,437-438:79.
[10] GARCÍA-FERNÁNDEZ S,GANDARIAS I,REQUIES J,et al.New approaches to the Pt/WOx/Al2O3 catalytic system behavior for the selective glycerol hydrogenolysis to 1,3-propanediol[J].Journal of Catalysis,2015,323:65.
[11] GARCÍA-FERNÁNDEZ S,GANDARIAS I,REQUIES J,et al.The role of tungsten oxide in the selective hydrogenolysis of glycerol to 1,3-propanediol over Pt/WOx/Al2O3[J].Applied Catalysis B(Environmental),2017,204:260.
[12] ZHU S,QIU Y,ZHU Y,et al.Hydrogenolysis of glycerol to 1,3-propanediol over bifunctional catalysts containing Pt and heteropolyacids[J].Catalysis Today,2013,212:120.
[13] WANG J,LEI N,YANG C,et al.Effect of promoters on the selective hydrogenolysis of glycerol over Pt/W-containing catalysts[J].Chinese Journal of Catalysis,2016,37(9):1513.
[14] 朱谦俊,阙振寰,何蓉.CO气体脉冲法研究铂催化剂中活性金属的分散度[J].贵金属,1985,6(3):1.
[15] DECANIO E C,EDWARDS J C,SCALZO T R,et al.FT-IR and solid-state NMR investigation of phosphorus promoted hydrotreating catalyst precursors[J].Journal of Catalysis,1991,132(2):498.
[16] ZHU S,GAO X,ZHU Y,et al.Alkaline metals modified Pt-H4SiW12O40/ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1,3-propanediol[J].Applied Catalysis B(Environmental),2013,140-141:60.

备注/Memo

备注/Memo:
收稿日期:2017-12-28
基金项目:江苏省产学研前瞻性研究项目(BY2015005-08)
作者简介:陈浩(1991—),男,E-mail:2270462896@qq.com; 陈长林(联系人),教授,E-mail:clchen@njtech.edu.cn.
引用本文:陈浩,陈长林. LiH2PO4改性对铂钨铝催化剂的影响[J].南京工业大学学报(自然科学版),2019,41(3):278-284..
更新日期/Last Update: 2019-05-30