|本期目录/Table of Contents|

[1]杨宸伟,武海霞,刘峰,等.介质阻挡放电协同合成沸石处理氨氮废水[J].南京工业大学学报(自然科学版),2019,41(02):239-245.[doi:10.3969/j.issn.1671-7627.2019.02.017]
 YANG Chenwei,WU Haixia,LIU Feng,et al.Removal of aqueous ammonia nitrogen by dielectric barrier discharge combined with synthetic zeolite[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2019,41(02):239-245.[doi:10.3969/j.issn.1671-7627.2019.02.017]
点击复制

介质阻挡放电协同合成沸石处理氨氮废水()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
41
期数:
2019年02期
页码:
239-245
栏目:
出版日期:
2019-03-19

文章信息/Info

Title:
Removal of aqueous ammonia nitrogen by dielectric barrier discharge combined with synthetic zeolite
文章编号:
1671-7627(2019)02-0239-07
作者:
杨宸伟1武海霞1刘峰2陈卫刚1姚锐1
1.南京工业大学 城市建设学院,江苏 南京 211800; 2.南京工业大学 电气工程与控制科学学院,江苏 南京 211800
Author(s):
YANG Chenwei1WU Haixia1LIU Feng2CHEN Weigang1YAO Rui1
1.College of Urban Construction,Nanjing Tech University,Nanjing 211800,China; 2.College of Automation and Electrical Engineering,Nanjing Tech University,Nanjing 211800,China
关键词:
氨氮废水 合成沸石 介质阻挡放电 非平衡等离子体
Keywords:
aqueous ammonia nitrogen artificial zeolite dielectric barrier discharge non-thermal plasma
分类号:
X703.1
DOI:
10.3969/j.issn.1671-7627.2019.02.017
文献标志码:
A
摘要:
采用介质阻挡放电(DBD)协同合成沸石组合工艺处理氨氮废水,考察溶液初始质量浓度、沸石投加量、沸石粒径、溶液初始pH、共存阳离子等因素对氨氮去除效果的影响,研究沸石循环利用性能及协同处理机制。结果表明:初始质量浓度100 mg/L模拟氨氮废水,250~380 μm的沸石投加量为10 g/L,放电间距0 mm,DBD协同处理20 min,氨氮去除率可达95.58%。溶液初始质量浓度低、初始pH呈弱碱性均有利于氨氮的去除。共存阳离子对氨氮有竞争吸附,3种金属阳离子对氨氮去除影响由强到弱的顺序为Mg2+、K+、Na+。DBD放电过程中对沸石有一定的再生效果,两者表现了出良好的协同去除氨氮作用。
Abstract:
Dielectric barrier discharge(DBD)combined with synthetic zeolite was proposed as a new treatment way for the removal of aqueous ammonia nitrogen.The effects of initial ammonium ion concentration,zeolite dosage,particle size of zeolite,initial pH of the solutions,and competitive cations on the removal efficiency were investigated by batch experiments.The mechanism of improving the ammonia nitrogen removal in the synergistic treatment system was discussed.Results showed that ammonium removal efficiency was reached 95.58% with optimal conditions of initial ammonium concentration of 100 mg/L,250-380 μm zeolite dosage of 10 g/L,discharge distance of 0 mm,and treatment time of 20 min.As the initial concentration of ammonia decreased,the removal efficiency increased.The optimal initial pH value was 8.5.Coexistence cations affected ammonium removal sequence was Mg2+,K+ and Na+.DBD discharge regenerated the zeolite,which showed a fine synergistic effect on ammonia nitrogen removal.

参考文献/References:

[1] LA M,ZHU X,ZHU F,et al.Application of modified zeolite for ammonium removal from drinking water[J].Desalination,2011,271(1/2/3):295.
[2] 黄晓鸣,潘敏,陈天虎,等.天然斜发沸石吸附去除水中氨氮机理研究[J].矿物学报,2016,36(3):371.
[3] 方苹,范伟平,沈珈琦,等.氨氮脱除的生物技术研究进展[J].南京工业大学学报(自然科学版),2003,25(5):107.
[4] 刘文龙,钱仁渊,包宗宏.吹脱法处理高浓度氨氮废水[J].南京工业大学学报(自然科学版),2008,30(4):56.
[5] ZHANG M,ZHANG H,XU D,et al.Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method[J].Desalination,2011,271(1/2/3):111.
[6] 杨朗,李志丰,张华,等.离子交换法与化学沉淀法联合处理氨氮废水[J].南京工业大学学报(自然科学版),2012,34(4):110.
[7] 任根宽.用煤矸石合成4A沸石分子筛处理氨氮废水[J].环境工程学报,2014,8(4):1533.
[8] 唐登勇,郑正,郭照冰,等.改性沸石吸附低浓度氨氮废水及其脱附的研究[J].环境工程学报,2011,5(2):293.
[9] 严小明,杨朗,钱吉彬,等.天然沸石吸附氨氮[J].南京工业大学学报(自然科学版),2009,31(2):89.
[10] YUSOF A M,KEAT L K,IBRAHIM Z,et al.Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ash-synthesized zeolite Y and powdered and granulated forms of mordenite[J].Journal of Hazardous Materials,2010,174(1/2/3):380.
[11] 饶力,汪晓军.天然沸石处理氨氮废水的中试研究[J].水处理技术,2016(4):104.
[12] 卢少勇,万正芬,李锋民,等.29种湿地填料对氨氮的吸附解吸性能比较[J].环境科学研究,2016,29(8):1187.
[13] 桂花,谭伟,李彬,等.4A沸石分子筛处理中低浓度氨氮废水[J].环境工程学报,2014,8(5):1944.
[14] 张新颖,余杨波,王美银,等.天然斜发沸石氨氮的改性吸附与化学再生[J].环境化学,2016,35(5):1058.
[15] WANG T,QU G,REN J,et al.Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma[J].Water Research,2016,89:28.
[16] 孙玉,田露,李蕊,等.Fenton-like/TiO2催化介质阻挡放电体系对活性艳蓝的降解[J].环境工程学报,2016,10(6):2819.
[17] WU H X,FANG Z,XU Y H.Degradation of aniline wastewater using dielectric barrier discharge at atmospheric pressure[J].Plasma Science & Technology,2015,17(3):228.
[18] 赵坤,党小庆,朱海瀛,等.负载型催化剂联合低温等离子体去除甲苯[J].环境工程报,2016,10(7):3756.
[19] 董冰岩,黄尝伟,江小华,等.脉冲放电协同负载型氧化物催化剂降解甲醛[J].环境工程学报,2015,9(10):4947.
[20] 孙明,郝夏桐,鲁晓辉,等.气液两相脉冲放电反应器的设计及其对酸性橙Ⅱ的降解效果[J].高电压技术,2015,41(2):498.
[21] 陈春雨,王卉,于琴琴,等.低温等离子体与天然丝光沸石协同降解正己醛[J].无机化学学报,2012,28(5):881.
[22] 陈扬达,王旎,陈建东,等.不同孔径HZSM-5协同低温等离子体催化降解甲苯性能研究[J].环境科学学报,2017,37(2):503.
[23] KUIC H,KOPRIVANAC N,PETERNEL I,et al.Hybrid gas/liquid electrical discharge reactors with zeolites for colored wastewater degradation[J].Journal of Advanced Oxidation Technologies,2005,8(8):172.
[24] KUIC H,KOPRIVANAC N,LOCKE B R.Decomposition of phenol by hybrid gas/liquid electrical discharge reactors with zeolite catalysts[J].Journal of Hazardous Materials,2005,125(1/2/3):190.
[25] ELIASSON B.Nonequilibrium volume plasma chemical proeessing[J].IEEE Transaction on Plasma Science,1991,19(6):1063.
[26] 孙冰.液相放电等离子体及其应用[M].北京:科学出版社,2013:1.
[27] 武海霞,徐炎华,方志,等.大气压介质阻挡放电降解水中苯胺[J].南京工业大学学报(自然科学版),2013,35(6):11.
[28] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002:211.
[29] QI D,LIU S,CAO Z,et al.Ammonia removal from aqueous solution using natural Chinese clinoptilolite[J].Separation & Purification Technology,2005,44(3):229.
[30] 黎晓霞,刘炳娟,蔡河山.天然沸石对废水中低浓度氨氮的去除研究[J].江西师范大学学报(自然科学版),2013,37(1):89.
[31] 巩师俞.沸石改性对水中氨氮及有机物的吸附试验研究[D].兰州:兰州交通大学,2013.
[32] LIU H,PENG S,SHU L,et al.Effect of Fe3O4 addition on removal of ammonium by zeolite NaA[J].Journal of Colloid & Interface Science,2013,390(1):204.
[33] 季金云.斜发沸石处理低浓度氨氮废水的吸附性能及再生实验研究[D].济南:山东大学,2014.
[34] 陈雷,韩杨,席北斗,等.粉煤灰提铝中间产物合成4A分子筛对氨氮的吸附行为研究[J].环境科学学报,2018,38(3):993.
[35] 杨云,宋梦然,于萍,等.人造沸石对氨氮废水的吸附及其电化学再生研究[J].工业水处理,2017,37(10):65.
[36] 唐克,洪新.NaY分子筛去除水中氨氮的实验研究[J].辽宁工业大学学报(自然科学版),2012,32(1):42.
[37] 郭祎阁,赵颖,郭宇杰,等.壳聚糖包覆介孔微孔分子筛去除水中的氨氮[J].环境工程学报,2015,9(5):2067.
[38] NIU Y,ZHAO Y,XI B,et al.Removal of ammonium from aqueous solutions using synthetic zeolite obtained from coal fly-ash[J].Fresenius Environmental Bulletin,2012,21(7):1732.
[39] 赵世永.粉煤灰合成4A沸石及应用研究[D].西安:西安科技大学,2005.
[40] WU H X,FANG Z,ZHOU T,et al.Discoloration of congo red by rod-plate dielectric barrier discharge processes at atmospheric pressure[J].Plasma Science & Technology,2016,18(5):500.
[41] HOIGNÉ J,BADER H.Ozonation of water:kinetics of oxidation of ammonia by ozone and hydroxyl radicals[J].Environment Science Technology,1978,12(1):79.
[42] 王胜军,马军,杨忆新,等.纳米TiO2催化臭氧化对松花江水中氨氮的影响[J].环境科学,2007,28(11):2520.
[43] OU H H,LIAO C H,LIOLI Y H,et al.Photocatalytic oxidation of aqueous ammonia over microwave-induced titanate nanotubes[J].Environmental Science & Technology,2008,42(12):4507.
[44] 任海涛.Ag增强TiO2和g-C3N4复合材料光催化转化含氮和苯酚污染物的研究[D].天津:天津大学,2015.
[45] HOIGNÉ J,BADER H,HAAG W R,et al.Rate constants of reactions of ozone with organic and inorganic compounds in water-Ⅲ:inorganic compounds and radicals[J].Water Research,1985,19(8):993.
[46] 刘永,曹广斌,蒋树义,等.冷水性鱼类工厂化养殖中臭氧催化氧化降解氨氮[J].中国水产科学,2005,12(6):790.
[47] 曲珍杰.超生强化人造沸石处理高浓度氨氮废水[D].南京:南京工业大学,2016.

备注/Memo

备注/Memo:
收稿日期:2017-12-20
基金项目:国家自然科学青年基金(51707093); 国家自然科学基金(51777091)
作者简介:杨宸伟(1992—),男,E-mail:niceyangcw@163.com; 武海霞(联系人),副教授,E-mail:vividhaixia@163.com.
引用本文:杨宸伟,武海霞,刘峰,等.介质阻挡放电协同合成沸石处理氨氮废水[J].南京工业大学学报(自然科学版),2019,41(2):239-245..
更新日期/Last Update: 2019-03-31