|本期目录/Table of Contents|

[1]李国波,徐玲玲.高性能聚羧酸减水剂的常温制备与结构表征[J].南京工业大学学报(自然科学版),2019,41(01):22-29.[doi:10.3969/j.issn.1671-7627.2019.01.004]
 LI Guobo,XU Lingling.Preparation and structural characterizatics of high performance polycarboxylate superplasticizer at normal temperature[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2019,41(01):22-29.[doi:10.3969/j.issn.1671-7627.2019.01.004]
点击复制

高性能聚羧酸减水剂的常温制备与结构表征()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
41
期数:
2019年01期
页码:
22-29
栏目:
出版日期:
2019-01-28

文章信息/Info

Title:
Preparation and structural characterizatics of high performance polycarboxylate superplasticizer at normal temperature
文章编号:
1671-7627(2019)01-0022-08
作者:
李国波徐玲玲
南京工业大学 材料科学与工程学院,江苏 南京 210009
Author(s):
LI GuoboXU Lingling
College of Materials Science and Engineering,Nanjing Tech University,Nanjing 210009,China
关键词:
聚羧酸减水剂 常温合成 氧化还原体系
Keywords:
polycarboxylate superplasticizer normal temperature redox system
分类号:
TB324
DOI:
10.3969/j.issn.1671-7627.2019.01.004
文献标志码:
A
摘要:
以2-甲基烯丙基聚氧乙烯醚(HPEG)和丙烯酸(AA)为单体、H2O2/抗坏血酸(H2O2/VC)为引发体系、巯基乙酸(TGA)为链转移剂合成聚羧酸减水剂。通过正交试验研究6个因素对减水剂分散性能及保持性的影响,并通过单因素研究修正,利用傅里叶变换红外光谱(FT-IR)和核磁共振氢谱(1H-NMR)对减水剂进行结构分析,利用凝胶色谱(GPC)测得合成减水剂分子量。结果表明:最佳工艺为在常温下(15~35 ℃),n(HPEG):n(AA):n(H2O2):n(VC):n(TGA)=1:4.2:0.40:0.015:0.10,物料滴加时间2 h,然后再反应2 h。减水剂数均分子量为44 167,分子结构的侧链聚合度为54.66,主链聚合度为15.89,接枝密度为23.81%。在折固掺量为0.15%时,水泥初始净浆流动度为285 mm,1 h后水泥净浆流动度为273 mm,净浆初凝时间由180 min缩短至170 min,终凝时间由260 min缩短至240 min,胶砂减水率达33.4%,表明所合成聚羧酸减水剂分散性能优异。
Abstract:
Using 2-methyl allyl polyoxyethylene ether(HPEG),acrylic acid(AA)as monomer,hydrogen peroxide/Vitamin C(H2O2/Vc)as complex initiator,and thioglycolic acid(TGA)as chain transfer agents,polycarboxylate superplasticizer was synthesized.The effects of six factors on the dispersibility and retention of the polycarboxylate superplasticizer were investigated by orthogonal test.The optimum process conditions were obtained by single factor experiments.The structure of the polycarboxylate superplasticizer was analyzed by Fourier transform infrared spectroscopy(FT-IR)and nuclear magnetic resonance spectroscopy(1H-NMR).The molecular weight of the polycarboxylate superplasticizer was obtained by gel chromatography(GPC).Results showed that the optimum process conditions were at normal temperature(15-35 ℃),n(HPEG):n(AA):n(H2O2):n(VC):n(TGA)=1:4.2:0.40:0.015:0.10,material addition time 2 h,and reaction 2 h.The molecular weight of the polycarboxylate superplasticizer was 44 167.The molecular structure of side chain polymerization degree was 54.66,the main chain polymerization degree was 15.89,and grafting density was 23.81%.When the amount of solidification was 0.15%,the fluidity of cement paste was 285 mm,and was 273 mm after 1 h.The standard consistency water demand decreased from 0.3 to 0.2,the initial setting time of slurry advanced from 180 min to 170 min,the final settling time advanced from 260 min to 240 min,and the water reduction rate of mortar was 33.4%.Results indicated that the synthesized polycarboxylate superplasticizer was excellent in dispersibility.

参考文献/References:

[1] 宋家乐,周智密,李禅禅,等.聚羧酸系减水剂的研究现状与展望[J].材料导报,2014,28(增刊):280.
[2] PLANK J,SAKAI E,MIAO C W,et al.Chemical admixtures-chemistry,applications and their impact on concrete microstructure and durability[J].Cement and Concrete Research,2015,78:81.
[3] DALAS F,NONAT A,POURCHET S,et al.Tailoring the anionic function and the side chains of comb-like superplasticizers to improve their adsorption[J].Cement and Concrete Research,2015,67:21.
[4] 冉千平,王秀梅,舒鑫,等.一种嵌段聚羧酸减水剂的制备与表征[J].高分子材料科学与工程,2016(1):30.
[5] PLANK J,LI H,ILG M,et al.A microstructural analysis of isoprenol ether-based polycarboxylates and the impact of structural motifs on the dispersing effectiveness[J].Cement and Concrete Research,2016,84:20.
[6] 史才军,何富强,刘慧,等.聚羧酸系高效减水剂的近期研究进展[J].商品混凝土,2010(2):20.
[7] 何燕,张雄,张永娟,等.含不同官能团聚羧酸减水剂的吸附-分散性能[J].同济大学学报(自然科学版),2017,45(2):244.
[8] 赵秋勇,许永东,陈小平,等.常温合成聚羧酸减水剂的研究现状及展望[J].混凝土,2014(5):80.
[9] 逄建军,魏中原.常温全混法制备聚羧酸减水剂及其性能研究[J].商品混凝土,2016(1):46.
[10] 洪万领,张雄,何燕.聚羧酸减水剂常温合成及其工业化试验[J].粉煤灰综合利用,2016(3):26.
[11] 陈小路.常温合成聚羧酸减水剂的方法及性能研究[J].新型建筑材料,2014(12):80.
[12] JANOWSKA-RENKAS E.The influence of the chemical structure of polycarboxylic superplasticizers on their effectiveness in cement pastes[J].Procedia Engineering,2015,108:575.
[13] KONG F,PAN L,WANG C,et al.Effects of polycarboxylate superplasticizers with different molecular structure on the hydration behavior of cement paste[J].Construction and Building Materials,2016,105:545.
[14] 罗东,张爱丽,林农,等.聚酯多元醇的羟值测定[J].合成纤维工业,2009(6):63.
[15] 李格丽,林倩,方云辉.超滤和核磁技术定性分析聚羧酸减水剂的大单体[J].中国测试,2015(7):46.

相似文献/References:

[1]朱琳俐,冯恩娟,徐正华,等.聚醚接枝聚羧酸系高效减水剂合成[J].南京工业大学学报(自然科学版),2010,32(01):106.
 ZHU Lin li,FENG En juan,XU Zheng hua,et al.Synthesis of high performance polyether grafted polycarboxylatebased superplasticizer[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2010,32(01):106.

备注/Memo

备注/Memo:
收稿日期:2017-04-18
基金项目:江苏高校优势学科建设工程
作者简介:李国波(1989—),男,E-mail:gbli@njtech.edu.cn; 徐玲玲(联系人),教授,E-mail:xll@njtech.edu.cn.
引用本文:李国波,徐玲玲.高性能聚羧酸减水剂的常温制备与结构表征[J].南京工业大学学报(自然科学版),2019,41(1):22-29..
更新日期/Last Update: 2019-02-26