|本期目录/Table of Contents|

[1]张波,王华,丁鹏,等.基于表观堆栈遗传编程的回转支承寿命预测[J].南京工业大学学报(自然科学版),2018,40(05):97-103.[doi:10.3969/j.issn.1671-7627.2018.05.016]
 ZHANG Bo,WANG Hua,DING Peng,et al.Life prediction of slewing bearing based on epigenetic stack genetic programming[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2018,40(05):97-103.[doi:10.3969/j.issn.1671-7627.2018.05.016]
点击复制

基于表观堆栈遗传编程的回转支承寿命预测()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
40
期数:
2018年05期
页码:
97-103
栏目:
出版日期:
2018-09-20

文章信息/Info

Title:
Life prediction of slewing bearing based on epigenetic stack genetic programming
文章编号:
1671-7627(2018)05-0097-07
作者:
张波1王华1丁鹏1高学海2
1.南京工业大学 机械与动力工程学院,江苏 南京 211800; 2. 上海欧际柯特回转支承有限公司,上海 201906
Author(s):
ZHANG Bo1WANG Hua1DING Peng1GAO Xuehai2
1. College of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 211800,China; 2. Shanghai OujiKete Slewing Bearing Co.Ltd.,Shanghai 201906,China
关键词:
回转支承 遗传编程算法(GP) 表观堆栈遗传编程算法(ESGP) 寿命预测
Keywords:
slewing bearing genetic programming(GP) epigenetic stack genetic programming(ESGP) life prediction
分类号:
TH133.3;TB52
DOI:
10.3969/j.issn.1671-7627.2018.05.016
文献标志码:
A
摘要:
由于回转支承的损伤机制不清楚,传统的寿命预测模型不能找出其寿命与振动信号的数学关系。本文改进传统的遗传编程算法(GP),根据表观遗传学的最新研究和堆栈结构,提出了基于表观堆栈遗传编程(ESGP)的寿命预测方法。先从时域、时频域中提取多个特征值,再用动态等距离映射算法从高维特征值中提取能够反映回转支承退化趋势的单一特征值,最后用ESGP进行寿命状态识别。结果表明,该算法成功地找出回转支承的寿命与振动信号的数学关系,为回转支承的损伤机制研究提供理论基础。其寿命预测精度、模型简洁度要高于传统GP。
Abstract:
The damage mechanism of slewing bearing is still not clear and traditional life prediction model cannot find the mathematical expressions between the life and vibration signal of slewing bearing. According to the latest research results of epigenetics and the idea of “stack structure”,a multi domain feature method based on epigenetic stack genetic programming(ESGP)was proposed for slewing bearing life prediction by the modification of the traditional genetic programming(GP). The features were extracted from time domain and time-frequency domain, and isometric mapping(ISOMAP)was used to reduce high-dimensional features to a single feature which could better reflect degeneration of slewing bearing. The proposed method had the mathematical relationship between the life of slewing bearing and vibration signal, which provided theoretical basis for the research of damage mechanism of slewing bearing. The precision of life prediction was higher than that of traditional GP and the life prediction model was simpler.

参考文献/References:

[1] ALI J B,FNAIECH N,SAIDI L.Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals [J].Applied acoustics,2015,89(3):16.
[2] 陈强华,李洪儒,许葆华.基于形态分形维数与改进ELM的轴承故障预测[J].轴承,2014(4):45.
[3] 肖文斌,陈进,周宇,等.小波包变换和隐马尔可夫模型在轴承性能退化评估中的应用[J].振动与冲击,2011,30(8):32.
[4] 钮满志,陈捷,封杨,等.基于支持向量机的风电偏航回转支承故障诊断[J].南京工业大学学报(自然科学科版),2014,36(1):117.
[5] 田淑华,王华,洪荣晶,等.基于多特征集融合与多变量支持向量回归的回转支承剩余寿命评估[J].南京工业大学学报(自然科学版),2016,38(3):50.
[6] ZHU X,ZHANG Y,ZHU Y.Bearing performance degradation assessment based on the rough support vector data description [J].Mechanical systems & signal processing,2013,34(1/2):203.
[7] MAIO F D,TSUI K L,ZIO E.Combining relevance vector machines and exponential regression for bearing residual life estimation [J].Mechanical systems & signal processing,2012,31(8):405.
[8] KOSASIH B Y,CAESARENDRA W,TIEU K,et al.Degradation trend estimation and prognosis of large low speed slewing bearing lifetime [J].Applied mechanics & materials,2014,493:343.
[9] HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis [J].Proceedings mathematical physical & engineering sciences,1998,454(1971):903.
[10] TENENBAUM J B,DE S V,LANGFORD J C.A global geometric framework for nonlinear dimensionality reduction [J].Science,2000,290(5500):2319.
[11] KOZA J R.Genetic programming as a means for programming computers by natural selection[J].Statistics & computing,1994,4(2):87.
[12] VANNESCHI L,POLI R.Genetic programming-introduction,applications,theory and open issues [M].Heidelberg:Springer-Verlag,2012.
[13] DIAS B G,RESSLER K J.Parental olfactory experience influences behavior and neural structure in subsequent generations [J].Nature neuroscience,2014,17(1):89.
[14] DIAS B G,RESSLER K J.PACAP and the PAC1 receptor in post-traumatic stress disorder [J].Neuropsychopharmacology official publication of the American college of neuropsychopharmacology,2013,38(1):245.

相似文献/References:

[1]谢冬华,洪荣晶,王华.回转支承自适应负载的运动控制方法[J].南京工业大学学报(自然科学版),2013,35(04):110.[doi:10.3969/j.issn.1671-7627.2013.04.023]
 XIE Donghua,HONG Rongjing,WANG Hua.Slewing bearing motion control based on adaptive load method[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2013,35(05):110.[doi:10.3969/j.issn.1671-7627.2013.04.023]
[2]杨杰,陈捷,徐新庭,等.基于小波-能量模式的回转支承故障诊断方法研究与应用[J].南京工业大学学报(自然科学版),2015,37(04):134.[doi:10.3969/j.issn.1671-7627.2015.04.024]
 YANG Jie,CHEN Jie,XU Xintin,et al.Slewing bearing analysis on fault diagnosis based on wavelet and energy fault mode and its application[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(05):134.[doi:10.3969/j.issn.1671-7627.2015.04.024]
[3]陆超,陈捷,洪荣晶,等.基于粒子群优化支持向量机的回转支承寿命状态识别[J].南京工业大学学报(自然科学版),2016,38(01):56.[doi:10.3969/j.issn.1671-7627.2016.01.010]
 LU Chao,CHEN Jie,HONG Rongjing,et al.Slewing bearing life state recognition based on support vector machine optimized by particle swarm[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2016,38(05):56.[doi:10.3969/j.issn.1671-7627.2016.01.010]
[4]田淑华,王华,洪荣晶.基于多特征集融合与多变量支持向量回归的回转支承剩余寿命评估[J].南京工业大学学报(自然科学版),2016,38(03):50.[doi:10.3969/j.issn.1671-7627.2016.03.009]
 TIAN Shuhua,WANG Hua,HONG Rongjing.Residual life assessment of slewing bearing based on multivariate eigenvalues fusion and support vector regression[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2016,38(05):50.[doi:10.3969/j.issn.1671-7627.2016.03.009]
[5]李媛媛,黄筱调,陈捷,等.基于遗传程序设计的回转支承寿命状态识别[J].南京工业大学学报(自然科学版),2017,39(06):111.[doi:10.3969/j.issn.1671-7627.2017.06.017]
 LI Yuanyuan,HUANG Xiaodiao,CHEN Jie,et al.Life state recognition of slewing bearing based on genetic programming[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2017,39(05):111.[doi:10.3969/j.issn.1671-7627.2017.06.017]
[6]何培瑜,洪荣晶,王华.摩擦因数对回转支承动态特性的影响[J].南京工业大学学报(自然科学版),2018,40(04):45.[doi:10.3969/j.issn.1671-7627.2018.04.008]
 HE Peiyu,HONG Rongjing,WANG Hua.Effects of friction coefficient on dynamic characteristics of the slewing bearing[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2018,40(05):45.[doi:10.3969/j.issn.1671-7627.2018.04.008]

备注/Memo

备注/Memo:
收稿日期:2017-07-07
基金项目:国家自然科学基金(51105191,51375222); 江苏省六大人才高峰(GDZB-033); 上海青年科技英才杨帆计划(16YF1408500)
作者简介:张波(1993—),男,江苏徐州人,硕士,主要研究方向为回转支承的健康状态评估; 王华(联系人),教授,E-mail:wanghua@njtech.edu.cn.
引用本文:张波,王华,丁鹏,等.基于表观堆栈遗传编程的回转支承寿命预测[J].南京工业大学学报(自然科学版),2018,40(5):97-103..
更新日期/Last Update: 2018-09-30