|本期目录/Table of Contents|

[1]姜仁政,矫义来,孙博,等.铁酸锌泡沫结构催化剂床层高径比对1-丁烯氧化脱氢性能的影响[J].南京工业大学学报(自然科学版),2018,40(05):1-5.[doi:10.3969/j.issn.1671-7627.2018.05.001]
 JIANG Renzheng,JIAO Yilai,SUN Bo,et al.Effects of ZnFe2O4 foam structured catalyst bed height on oxidative dehydrogenation of 1-butene[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2018,40(05):1-5.[doi:10.3969/j.issn.1671-7627.2018.05.001]
点击复制

铁酸锌泡沫结构催化剂床层高径比对1-丁烯氧化脱氢性能的影响()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
40
期数:
2018年05期
页码:
1-5
栏目:
出版日期:
2018-09-20

文章信息/Info

Title:
Effects of ZnFe2O4 foam structured catalyst bed height on oxidative dehydrogenation of 1-butene
文章编号:
1671-7627(2018)05-0001-05
作者:
姜仁政12矫义来1孙博1杨晓丹1杨振明1张劲松1
1.中国科学院金属研究所,辽宁 沈阳 110016; 2.中国科学院大学,北京 100049
Author(s):
JIANG Renzheng12JIAO Yilai1SUN Bo1YANG Xiaodan1YANG Zhenming1ZHANG Jinsong1
1.Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China; 2.University of Chinese Academy of Sciences,Beijing 100049,China
关键词:
ZnFe2O4-α-Fe2O3 泡沫SiC 结构催化剂 丁烯氧化脱氢 高径比
Keywords:
ZnFe2O4-α-Fe2O3 foam silicon carbide structured catalyst butene oxidative dehydrogenation catalyst bed height
分类号:
TQ031.4
DOI:
10.3969/j.issn.1671-7627.2018.05.001
文献标志码:
A
摘要:
采用浆料涂覆法制得ZnFe2O4-α-Fe2O3/SiC泡沫结构催化剂。研究催化剂床层高度、催化剂负载量和不同负载量结构催化剂组合对催化1-丁烯氧化脱氢性能和床层温升分布的影响。结果表明:催化剂负载量为0.2 g/mL、床层高度为12~36 mm时,随着床层高度的增加,1-丁烯转化率缓慢下降,丁二烯产量呈线性增长趋势; 当床层高度为48 mm时,床层入口温升过高,使1-丁烯转化率降低且丁二烯产量显著偏离线性增长关系; 降低催化剂负载量可以降低床层入口温升,提高1-丁烯转化率; 采用负载量为0.082和0.164 g/mL的结构催化剂组合进行装填时,1-丁烯转化率提高到82%,丁二烯产量回归线性增长关系。在床层高度为48 mm的结构催化剂的最佳氧烯摩尔比为0.85、水烯摩尔比为8~18时,催化剂的氧化脱氢性能变化不大。
Abstract:
ZnFe2O4-α-Fe2O3/SiC foam structured catalyst was fabricated by a slurry-coating method.The influences of catalyst bed height,catalyst loading and the combination of structured catalyst with different catalyst loading on the catalytic performance and temperature rise of the structured catalyst bed were studied.Results showed that when the catalyst loading was 0.2 g/mL,1-butene conversion gradually decreased,but butadiene yield increased linearly with the increase of structured bed height from 12 mm to 36 mm.When the height of catalyst bed was 48 mm,the over-high inlet temperature caused the reduction of 1-butene conversion and the deviation of butadiene yield from linearity.Reducing the catalyst loading could lower the inlet temperature rise and improve the 1-butene conversion.When the combination of structured catalysts with catalyst loading of 0.082 and 0.164 g/mL was used,1-butene conversion increased up to 82% and butadiene yield regressed to the linear relationship.The optimum molar ratio of oxygen to 1-buetne on the structured catalyst of 48 mm height was 0.85 and when molar ratio of steam to 1-buetne was in the range of 8 to 18,and the catalytic performance remained unchanged.

参考文献/References:

[1] HONG E,PARK J H,SHIN C H.Oxidative dehydrogenation of n-butenes to 1,3-butadiene over bismuth molybdate and ferrite catalysts:a review[J].Catalysis surveys from Asia,2016,20(1):23.
[2] MAKSHINAE V,DUSSELIER M,JANSSENS W,et al.Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene[J].Chemical society reviews,2014,43(22):7917.
[3] STERRETT J S,MCLLVRIED H G.Kinetics of the oxidative dehydrogenation of butene to butadiene over a ferrite catalyst[J].Industrial & engineering chemistry process design & development,1974,13(1):54.
[4] 戴迎春,袁渭康.丁烯氧化脱氢反应器开发中的工程问题[J].高校化学工程学报,1993(3):256.
[5] TRONCONI E,GROPPI G,VISCONTI C G.Structured catalysts for non-adiabatic applications[J].Current opinion in chemical engineering,2014,5:55.
[6] LIU Y,EDOUARD D,NGUYEN L D,et al.High performance structured platelet milli-reactor filled with supported cobalt open cell SiC foam catalyst for the Fischer-Tropsch synthesis[J].Chemical engineering journal,2013,222(8):265.
[7] LI C,XU H,HOU S,et al.SiC foam monolith catalyst for pressurized adiabatic methane reforming[J].Applied energy,2013,107(3):297.
[8] LIU H,YANG D,GAO R,et al.A novel Na2WO4-Mn/SiC monolithic foam catalyst with improved thermal properties for the oxidative coupling of methane[J].Catalysis communications,2008,9(6):1302.
[9] 房俊卓,徐崇福.三种X射线物相定量分析方法对比研究[J].煤炭转化,2010,33(2):88.
[10] PARK J H,NOH H,JI W P,et al.Effects of iron content on bismuth molybdate for the oxidative dehydrogenation of n-butenes to 1,3-butadiene[J].Applied catalysis A(general),2012,431-432(29):137.
[11] 姜仁政,矫义来,孙博,等.ZnFe2O4-α-Fe2O3/SiC泡沫结构催化剂的制备和丁烯氧化脱氢性能[J].材料研究学报,2018,32(3):225.
[12] 陈爱平,王润俦,黄新辉,等.B90无铬铁酸盐催化剂等温固定床的开发研究[J].石油化工,1995(2):79.
[13] 袁永根.丁烯氧化脱氢固定床反应器的数学模型研究[J].合成橡胶工业,1981,4(6):447.

备注/Memo

备注/Memo:
收稿日期:2017-05-15
作者简介:姜仁政(1985—),男,辽宁抚顺人,博士,主要研究方向为泡沫SiC基结构催化剂; 张劲松(联系人),研究员,E-mail:jshzhang@imr.ac.cn.
引用本文:姜仁政,矫义来,孙博,等.铁酸锌泡沫结构催化剂床层高径比对1-丁烯氧化脱氢性能的影响[J].南京工业大学学报(自然科学版),2018,40(5):1-5..
更新日期/Last Update: 2018-09-30