|本期目录/Table of Contents|

[1]张玉婷,安立宝,蔡小勇.局部焦耳热法降低石墨烯接触电阻的试验研究[J].南京工业大学学报(自然科学版),2018,40(02):47-52.[doi:10.3969/j.issn.1671-7627.2018.02.008]
 ZHANG Yuting,AN Libao,CAI Xiaoyong.Experiments on the contact resistance reduction of graphene by local Joule heating[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2018,40(02):47-52.[doi:10.3969/j.issn.1671-7627.2018.02.008]
点击复制

局部焦耳热法降低石墨烯接触电阻的试验研究
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
40
期数:
2018年02期
页码:
47-52
栏目:
出版日期:
2018-03-20

文章信息/Info

Title:
Experiments on the contact resistance reduction of graphene by local Joule heating
文章编号:
1671-7627(2018)02-0047-06
作者:
张玉婷1安立宝1蔡小勇2
1.华北理工大学 机械工程学院,河北 唐山 063210; 2.国家纳米科学中心 中国科学院纳米标准与检测重点试验室,北京 100190
Author(s):
ZHANG Yuting1AN Libao1CAI Xiaoyong2
1.College of Mechanical Engineering,North China University of Science and Technology,Tangshan 063210,China; 2.CAS Key Laboratory of Standardization and Measurement for Nanotechnology,CAS Center for Excellence in Nano Science,National Center for Nanoscience and Technology,Beijing 100190,China
关键词:
石墨烯 接触电阻 局部焦耳热 正交试验
Keywords:
graphene contact resistance local Joule heating orthogonal experiment design
分类号:
TN4
DOI:
10.3969/j.issn.1671-7627.2018.02.008
文献标志码:
A
摘要:
局部焦耳热法可简单、有效地降低石墨烯与金属电极的接触电阻,用于改善基于石墨烯纳米器件的性能。本文利用介电电泳方法在金属电极间隙组装石墨烯,制备石墨烯纳米器件原型。组装后石墨烯的接触电阻较高,采用局部焦耳热法降低石墨烯的接触电阻。利用正交试验设计和极差、方差分析,研究局部焦耳热试验中交变电压幅值、电压频率以及通电时间对石墨烯接触电阻的影响。通过分析得出交变电压幅值是主要影响因素,为通电产生局部焦耳热降低石墨烯接触电阻的实际应用提供指导。
Abstract:
The local Joule heating method can simply and effectively reduce the electrical contact resistance between graphene and metal electrodes.It can be used to improve the performance of graphene-based nanodevices.In the paper,graphene was assembled onto the electrode gap by dielectrophoresis,and the prototype of the graphene-based device was fabricated.The high contact resistance of graphene after assembly was reduced by local Joule heating.The effect of the amplitude and frequency of the alternating voltage as well as the voltage switch-on time on the contact resistance was investigated by orthogonal experimental design with the range and variance analysis.Results showed that the amplitude of the alternating voltage was the main influencing factor,and provided guidance for the industrial application of local Joule heating method to reduce the contact resistance between graphene and metal electrodes.

参考文献/References:

[1] XU S,ZHANG L,ZHANG H,et al.A salt-assisted graphene oxide aggregation method for the determination of dimethylamine and trimethylamine by ion chromatography with conductivity detection[J].Analytical methods,2016,8(8):1828.
[2] STANKOVICH S,DIKIN D A,PINER R D,et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J].Carbon,2007,45(7):1558.
[3] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Two-dimensional gas of massless Dirac fermions in graphene[J].Nature,2005,438(7065):197.
[4] KE R,ZHANG X,WANG L,et al.Electrochemi luminescence sensor based on graphene oxide/polypyrrole/CdSe nanocomposites[J].Journal of alloys and compounds,2015,622:1027.
[5] LIANG J,XU Y,SUI D,et al.Flexible,magnetic,and electrically conductive graphene/Fe3O4 paper and its application for magnetic-controlled switches[J].The journal of physical chemistry C,2017,114(41):17465.
[6] SEEKAEW Y,PHOKHARATKUL D,WISITSORAAT A,et al.Highly sensitive and selective room-temperature NO2,gas sensor based on bilayer transferred chemical vapor deposited graphene[J].Applied surface science,2017,404:357.
[7] LIM S C,JANG J H,BAE D J,et al.Contact resistance between metal and carbon nanotube interconnects:effect of work function and wettability[J].Applied physics letters,2009,95(26):264103.
[8] SMITH J T,FRANKLIN A D,FARMER D B,et al.Reducing contact resistance in graphene devices through contact area patterning[J].ACS nano,2013,7(4):3661.
[9] LEONG W S,GONG H,THONG J T.Low-contact-resistance graphene devices with nickel-etched-graphene contacts[J].ACS nano,2014,8(1):994.
[10] BALCI O,KOCABAS C.Rapid thermal annealing of graphene-metal contact[J].Applied physics letters,2012,101(24):243107.
[11] WU X,ZHAO H,PEI J.Fabrication of nanopore in graphene by electron and ion beam irradiation:influence of graphene thickness and substrate[J].Computational materials science,2015,102:258.
[12] LIU X,WU Y,SU Y,et al.Enhanced electron field emission characteristics of single-walled carbon nanotube films by ultrasonic bonding[J].Physica E(low-dimensional systems and nanostructures),2014,63(9):165.
[13] KHADEMI A,SAJADI E,DOSANJH P,et al.Alkali doping of graphene:the crucial role of high temperature annealing[J].Physical review B,2016,94(20):1.
[14] GROSSE K L,BAE M H,LIAN F,et al.Nanoscale Joule heating,peltier cooling and current crowding at graphene-metal contacts[J].Nature nanotechnology,2011,6(5):287.
[15] AN L,FRIEDRICH C R.Real-time gap impedance monitoring of dielectrophoretic assembly of multiwalled carbon nanotubes[J].Applied physics letters,2008,92(17):173103.
[16] AN L,FRIEDRICH C R.Process parameters and their relations for the dielectrophoretic assembly of carbon nanotubes[J].Journal of applied physics,2009,105(7):074314.
[17] AN L,FRIEDRICH C R.Dielectrophoretic assembly of carbon nanotubes and stability analysis[J].Progress in natural science:materials international,2013,23(4):367.
[18] 安立宝,李文,常春蕊.石墨烯介电电泳组装及电学特性研究[J].材料工程,2017,45(12):88.
[19] 韩子旭,安立宝,张鹏.通电降低碳纳米管接触电阻的正交试验研究[J].化工新型材料,2015(11):126.
[20] AN L,YANG X,CHANG C.On contact resistance of carbon nanotubes[J].International journal of the oretical and applied nanotechnology,2013(1):30.
[21] KARITA M,ASAKA K,NAKAHARA H,et al.In situ TEM study on the improvement of contact resistance between a carbon nanotube and metal electrodes by local melting[J].Surface & interface analysis,2012,44(6):674.
[22] LI X,KONG B D,ZAVADA J M,et al.Strong substrate effects of Joule heating in graphene electronics[J].Applied physics letters,2011,99(23):233114.
[23] GROSSE K L,BAE M H,Lian F,et al.Nanoscale Joule heating,Peltier cooling and current crowding at graphene-metal contacts[J].Nature nanotechnology,2011,6(5):287.
[24] YIN Z,SUN S,SALIM T,et al.Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes[J].ACS nano,2010,4(9):5263.
[25] KHATAMI Y,LI H,XU C,et al.Metal-to-multilayer-graphene contact:part I,contact resistance modeling[J].IEEE transactions on electron devices,2012,59(9):2444.
[26] REN Y,CHEN S,CAI W,et al.Controlling the electrical transport properties of graphene by in situ metal deposition[J].Applied physics letters,2010,97(5):053107.
[27] ERMAKOV V A,VAZ A R,ALAFERDOV A V,et al.Drop of thermal contacts resistance between multi-layer graphene and metals caused by laser[J].Journal of integrated circuits & systems,2014,9(2):87.
[28] PARK N,KANG D,HONG S,et al.Pressure-dependent Schottky barrier at the metal-nanotube contact[J].Applied physics letters,2005,87(1):013112.

相似文献/References:

[1]顾正彬,季根华,卢明辉.二维碳材料——石墨烯研究进展[J].南京工业大学学报(自然科学版),2010,32(03):105.
 GU Zhengbin,JI Genhua,LU MingHui.Research progress of 2-D carbon material:graphene[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2010,32(02):105.
[2]付翠利,杨晓宁.水溶液中石墨烯剥离的分子动力学模拟[J].南京工业大学学报(自然科学版),2013,35(04):87.[doi:10.3969/j.issn.1671-7627.2013.04.018]
 FU Cuili,YANG Xiaoning.Molecular dynamics simulation of graphene exfoliation in water[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2013,35(02):87.[doi:10.3969/j.issn.1671-7627.2013.04.018]

备注/Memo

备注/Memo:
收稿日期:2017-06-26
基金项目:国家自然科学基金(51472074,51172062); 河北省“百人计划”(E2012100005); 华北理工大学研究生创新项目(2017S25)
作者简介:张玉婷(1990—),女,河北秦皇岛人, 硕士,主要研究方向为碳纳米功能材料组装; 安立宝(联系人),教授,E-mail:lan@ncst.edu.cn.
引用本文:张玉婷,安立宝,蔡小勇.局部焦耳热法降低石墨烯接触电阻的试验研究[J].南京工业大学学报(自然科学版),2018,40(2):47-52..
更新日期/Last Update: 2018-03-30