|本期目录/Table of Contents|

[1]周剑秋,张振忠,尹侠,等.纳米晶体材料的本构模型研究进展[J].南京工业大学学报(自然科学版),2006,28(05):105-110.[doi:10.3969/j.issn.1671-7627.2006.05.023]
 ZHOU Jian-qiu,ZHANG Zheng-zhong,YIN Xia,et al.Review on the constitutive modeling study of nanocrystalline materials[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2006,28(05):105-110.[doi:10.3969/j.issn.1671-7627.2006.05.023]
点击复制

纳米晶体材料的本构模型研究进展()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
28
期数:
2006年05期
页码:
105-110
栏目:
出版日期:
2006-09-20

文章信息/Info

Title:
Review on the constitutive modeling study of nanocrystalline materials
作者:
周剑秋张振忠尹侠贺小华李庆生李政辉
南京工业大学,机械与动力工程学院,江苏南京,210009
Author(s):
ZHOU Jian-qiu ZHANG Zheng-zhong YIN Xia HE Xiao-hua LI Qing-sheng LI Zheng-hui
关键词:
纳米晶体材料本构模型位错蠕变
分类号:
TG14
DOI:
10.3969/j.issn.1671-7627.2006.05.023
摘要:
纳米晶体材料具有优异的力学性能,近年来,不少国内外研究者对纳米晶体材料的力学行为和本构模型进行了深入的研究.有针对性地回顾了国内外纳米晶体材料本构模型的研究工作,对国际上最新成果进行了评述,指出了尚未解决的一些关键技术问题.结合相关领域的最新研究成果,提出了今后应着重研究的4个关键点分别为:纳米晶体相与应变速率和晶粒尺寸相关的变形机理和本构方程、晶界相与应变速率和晶粒尺寸相关的变形机理和本构方程、含孔隙多相复合夹杂体的协调变形力学理论研究、实验制备和表征,并就这4个关键点提出了一些思路与建议.

参考文献/References:

[1] Gleiter H. Nanocrystalline materials [J]. Progress in Materials Science, 1989.223-315.
[2] Birringer R. Nanocrystalline materials:an approach to a novel solid structure with gas-like disorder [J]. Physics Letters, 1984.365-369.
[3] Chou C, Phillips J. Plasma production of metallic nanoparticles [J]. Journal of Materials Research, 1992(7):2107-2113.doi:10.1557/JMR.1992.2107.
[4] Suryanarayana C. Nanocrystalline materials [J]. International Materials Reviews, 1995.41-64.
[5] Koch C. The synthesis and structure of nanocrystalline materials produced by mechanical attrition:a review [J]. Nanostructured Materials, 1993(2):109-129.doi:10.1016/0965-9773(93)90016-5.
[6] 卢柯, 周飞. 纳米晶体材料的研究现状 [J]. 金属学报, 1997.99-106.
[7] 朱文辉, 周光泉, 程经毅. 纳米晶体材料屈服应力与晶粒尺寸的依赖关系 [J]. 金属学报, 1996.959-965.
[8] Carsley J E, Ning J, Milligan W W. A simple mixture based model for the grain size dependence of strength in nanophase metals [J]. Nanostructured Materials, 1995(5):441-448.doi:10.1016/0965-9773(95)00257-F.
[9] Nazarov A A. On the pile up model of the grain size-yield stress for nanocrystals [J]. Scripta Materialia, 1996.697-701.doi:10.1016/1359-6462(95)00572-2.
[10] Pande C S, Masumura R A, Armstrong R W. Pile-up based hall-petch relation for nanoscale materials [J]. Nanostructured Materials, 1993(2):323-331.doi:10.1016/0965-9773(93)90159-9.
[11] 王宏涛, 杨卫. 纳晶金属的力学行为 [J]. 力学进展, 2004, (3):314-326.doi:10.3321/j.issn:1000-0992.2004.03.003.
[12] Schiotz J, Jacobsen K W. A maximum in the strength of nanocrystalline copper [J]. Science, 2003, (5638):1357-1358.doi:10.1126/science.1086636.
[13] 王彪, 刘玉岚. 纳米晶体材料的非线性微结构本构方程 [J]. 黑龙江工程学院学报, 2002(1):3-10.doi:10.3969/j.issn.1671-4679.2002.01.001.
[14] Capolungo L, Jochum C, Cherkaoui M. Homogenization method for strength and inelastic behavior of nanocrystalline materials [J]. International Journal of Plasticity, 2005, (1):67-82.doi:10.1016/j.ijplas.2004.02.002.
[15] Kim H S, Estrin Y. Phase mixture modeling of the strain rate dependent mechanical behavior of nanostructured materials [J]. ACTA MATERIALIA, 2005, (3):765-772.doi:10.1016/j.actamat.2004.10.028.
[16] Khan A S, Zhang H, Takacs L. Mechanical response and modeling of fully compacted nano-crystalline iron and copper [J]. International Journal of Plasticity, 2000, (12):1459-1476.doi:10.1016/S0749-6419(00)00023-1.
[17] Gurson A L. Continuum theory of ductile rupture by void nucleation and growth:I.Yield criteria and flow rules for porous ductile media [J]. ASME Journal of Engineering Materials and Technology, 1977.2-15.
[18] Khan A S, Zhang H. Mechanically alloyed nanocrystalline iron and copper mixture:behavior and constitutive modeling over a wide range of strain rates [J]. International Journal of Plasticity, 2000, (12):1477-1492.doi:10.1016/S0749-6419(00)00024-3.
[19] Jiang B, Weng G. A composite model for the grain-size dependence of yield stress of nanograined materials [J]. Metallurgical and Materials Transactions, 2003, (3-4):765-772.
[20] Jiang B, Weng G J. A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials [J]. Journal of the Mechanics and Physics of Solids, 2004, (5):1125-1149.doi:10.1016/j.jmps.2003.09.002.
[21] Jiang B, Weng G J. A theory of compressive yield strength of nano-grained ceramics [J]. International Journal of Plasticity, 2004, (11):2007-2026.doi:10.1016/j.ijplas.2003.10.010.
[22] Schiotz J, Di Tolla F D, Jacobsen K W. Softening of nanocrystalline metals at very small grain sizes [J]. Nature, 1998.561-563.
[23] Schiotz J, Jacobsen K W. A maximum in the strength of nanocrystalline copper [J]. Science, 2003, (5638):1357-1359.doi:10.1126/science.1086636.
[24] Kim B N, Hiraga K K, Morita K. A high-strain-rate superplastic ceramic [J]. NATURE, 2001.288-291.
[25] Averback R S, Hfler H J, Hahn H. Sintering and grain growth in nanocrystalline ceramics [J]. Nanostructured Materials, 1992(1):173-178.doi:10.1016/0965-9773(92)90072-6.
[26] Chokshi A H, Rosen A, Karch J. On the validity of the Hall-Petch relationship in nanocrystalline materials [J]. Scripta Metallurgica et Materialia, 1989.1679-1684.
[27] Fougere G E, Weertman J R, Siegel R W. Grain-size dependent hardening and softening of nanocrystalline Cu and Pd [J]. Scripta Metallurgica et Materialia, 1992.1879-1883.doi:10.1016/0956-716X(92)90052-G.
[28] Lu K, Wei W D, Wang J T. Microhardness and fracture properties of nanocrystalline Ni-P alloy [J]. Scripta Metallurgica et Materialia, 1990.2319-2323.
[29] Sanders D G, Eastman J A, Weertman J R. Elastic and tensile behavior of nanocrystallinecopper and palladium [J]. Acta Materialia, 1997, (10):4019-4025.doi:10.1016/S1359-6454(97)00092-X.
[30] Sanders D G, Youngdahl C J, Weertman J R. The strength of nanocrystalline metals with and without flaws [J]. Materials Science and Engineering A, 1997, (234-236):77-82.doi:10.1016/S0921-5093(97)00185-8.
[31] Weertman J R, Farkas D, Hemker K. Structure and mechanical behavior of bulk nanocrystalline materials [J]. MRS Bulletin, 1999.44-50.
[32] Schuh C A, Nieh T G, Yamasaki T. Hall Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel [J]. Scripta Materialia, 2002.735-740.doi:10.1016/S1359-6462(02)00062-3.
[33] Derlet P M, Swygenhoven H V. Length scale effects in the simulation of deformation properties of nanocrystalline metals [J]. Scripta Materialia, 2002.719-724.doi:10.1016/S1359-6462(02)00182-3.
[34] Kumar K S, Suresh S, Chisholm M F. Deformation of electrodeposited nanocrystalline nickel [J]. Acta Materialia, 2003.387-405.
[35] Schumacher S, Birringer R, Straub R. Diffusion of silver in nanocrystalline copper between 303 and 373 K [J]. Acta Materialia, 1989.2485-2488.doi:10.1016/0001-6160(89)90046-1.
[36] Palumbo G, Doyle D M, El-Sherik A M. Intercrystalline hydrogen transport in nanocrystalline nickel [J]. Scripta Metallurgica et Materialia, 1991.679-684.doi:10.1016/0956-716X(91)90114-G.
[37] Pande C S, Masumura R A, Armstrong R W. Pile-up based hall-petch relation for nanoscale materials [J]. Nanostructured Materials, 1993(2):323-331.doi:10.1016/0965-9773(93)90159-9.
[38] Estrin Y, Krausz A S, Krausz K. Unified constitutive laws of plastic deformation [M]. New York:Academic Press, Inc, 1996.69.
[39] Kim H S, Bush M B, Estrin Y. Plastic deformation behaviour of fine-grained materials [J]. Acta Materialia, 2000.493-504.
[40] Van Swygenhoven H, Spaczer M, Caro A. Microscopic description of plasticity in computergenerated metallic nanophase samples:a comparison between Cu and Ni [J]. Acta Materialia, 1999, (10):3117-3126.doi:10.1016/S1359-6454(99)00109-3.
[41] Yamakov V, Wolf D, Phillpot S R. Grain-boundary diffusion creep in nanocrystalline palladium by molecular dynamics simulation [J]. Acta Materialia, 2002, (1):61-73.doi:10.1016/S1359-6454(01)00329-9.
[42] Valiev R Z. Structure and mechanical properties of ultra-fine-grained metals [J]. Materials Science and Engineering, 1997.59-66.
[43] Wang N, Wang Z, Aust K T. Effect of grain size on mechanical properties of nanocrystalline materials [J]. Acta Metallurgica Et Materialia, 1995.519-528.
[44] Ranganathan S, Divakar R, Raghunathan V S. Interface structures in nanocrystalline materials [J]. Scripta Materialia, 2001.1169-1174.doi:10.1016/S1359-6462(01)00678-9.
[45] Ranganathan S, Divakar R, Raghunathan V S. Interface structures in nanocrystalline materials [J]. Scripta Materialia, 2001.1169-1174.doi:10.1016/S1359-6462(01)00678-9.
[46] Schiotz J, Vegge T, Di Tolla F D. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals [J]. Physical Review B:Condensed Matter, 1999, (17):11971-11983.doi:10.1103/PhysRevB.60.11971.
[47] Sanders P G, Youngdahl G J, Weertman J R. The strength of nanocrystalline metals with and without flaws [J]. Materials Science and Engineering, 1997.77-82.
[48] Gologanu M, Leblond J B, Devaux D. Approximate models for ductile metals containing nonspherical voids-case of axisymmetric oblate ellipsoidal cavities [J]. ASME Journal of Engineering Materials and Technology, 1994.290-297.
[49] Marin E B, McDowell D L. Associative versus non-associative porous viscoplasticity based on inernal state variable concepts [J]. International Journal of Plasticity, 1996, (5):629-669.doi:10.1016/S0749-6419(96)00023-X.
[50] Lee B J, Mear M E. Studies of the growth and collapse of voids in viscous solids [J]. ASME Journal of Engineering Materials and Technology, 1994.348-358.
[51] Carroll M M, Holt A C. Static and dynamic pore-collapse relations for ductile porous materials [J]. Journal of Applied Physics, 1972.1626-1635.
[52] Bonnenfant D, Mazerolle F, Suquet P. Compaction of powders containing hard inclusions:experiments and micromechanical modeling [J]. Mechanics of Materials, 1998, (2):93-109.doi:10.1016/S0167-6636(97)00071-9.
[53] Hom C L, McMeeking R M. Void growth in elastic-plastic materials [J]. Journal of Applied Mechanics, Transactions ASME, 1989.309-317.doi:10.1115/1.3176085.
[54] Spitzig W A, Smelser R E, Richmond O. The evolution of damage and fracture in iron compacts with various initial porosities [J]. Acta Materialia, 1988.1201-1211.
[55] Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems [J]. Proceedings of the Royal Society, 1957.376-396.
[56] Cherkaoui M, Sun Q P, Song G P. Micromechanics modelling of composite with ductile matrix and shape memory alloy reinforcement [J]. International Journal of Solids and Structures, 2000, (11):1577-1594.doi:10.1016/S0020-7683(98)00332-1.

相似文献/References:

[1]沈峰,周剑秋,朱荣涛.基于整体结构的纳米晶体材料力学模型[J].南京工业大学学报(自然科学版),2009,31(05):25.
 SHEN Feng,ZHOU Jianqiu,ZHU Rongtao.Polycrystalline mechanical model for bulk nanocrystalline materials as an integral obeject[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2009,31(05):25.
[2]郭樟根,孙伟民,闵珍.FRP与混凝土界面粘结性能的试验研究[J].南京工业大学学报(自然科学版),2006,28(06):37.[doi:10.3969/j.issn.1671-7627.2006.06.009]
 GUO Zhang-gen,SUN Wei-min,MIN Zhen.Experimental study on bond behavior between FRP-concrete interface[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2006,28(05):37.[doi:10.3969/j.issn.1671-7627.2006.06.009]
[3]王英,周剑秋,张舒.纳米晶体材料不同晶粒尺寸与取向分布下力学性能的有限元分析[J].南京工业大学学报(自然科学版),2014,36(05):70.[doi:10.3969/j.issn.1671-7627.2014.05.013]
 WANG Ying,ZHOU Jianqiu,ZHANG Shu.Finite element simulation analysis on effects of grain size and grain orientation on mechanical behavior of nanocrystalline materials[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2014,36(05):70.[doi:10.3969/j.issn.1671-7627.2014.05.013]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金,霍英东教育基金,江苏省高校自然科学基金
更新日期/Last Update: 1900-01-01