|本期目录/Table of Contents|

[1]刘莎,黎军,陆小华.新型均相催化产氢Ru(Ⅱ)NNN配合物的理论预测[J].南京工业大学学报(自然科学版),2017,39(02):133-138.[doi:10.3969/j.issn.1671-7627.2017.02.022]
 LIU Sha,LI Jun,LU Xiaohua.An alternative Ru(Ⅱ)NNN complex for catalytic hydrogen production from water:a theoretical prediction[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2017,39(02):133-138.[doi:10.3969/j.issn.1671-7627.2017.02.022]
点击复制

新型均相催化产氢Ru(Ⅱ)NNN配合物的理论预测()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
39
期数:
2017年02期
页码:
133-138
栏目:
出版日期:
2017-03-20

文章信息/Info

Title:
An alternative Ru(Ⅱ)NNN complex for catalytic hydrogen production from water:a theoretical prediction
文章编号:
1671-7627(2017)02-0133-06
作者:
刘莎黎军陆小华
南京工业大学 材料化学工程国家重点实验室,江苏 南京 210009
Author(s):
LIU ShaLI JunLU Xiaohua
State Key Laboratory of Materials-Oriented Chemical Engineering,Nanjing Tech University,Nanjing 210009,China
关键词:
Ru配合物 NNN配体 分解水产氢 密度泛函理论计算
Keywords:
Ru complex NNN ligand hydrogen production from water density functional theory calculations
分类号:
O641.4
DOI:
10.3969/j.issn.1671-7627.2017.02.022
文献标志码:
A
摘要:
本文提出用NNN配体代替Ru(Ⅱ)PNN配合物中的PNN配体,设计得到Ru(Ⅱ)NNN配合物,并应用密度泛函理论研究该配合物催化分解水产氢的可能性。结果表明:在Ru(Ⅱ)NNN配合物上分解水产氢的机制与在Ru(Ⅱ)PNN配合物上的机制相似,但决定速度步骤的活化能垒降为147.7 kJ/mol,在Ru(Ⅱ)PNN配合物上相应步骤的能垒为157.3 kJ/mol。此外,在Ru(Ⅱ)PNN配合物上该反应为弱吸热反应; 但在Ru(Ⅱ)NNN配合物上为弱放热反应,热力学上更有利。因此,可以预测Ru(Ⅱ)NNN配合物具有与Ru(Ⅱ)PNN配合物相同的分解水产氢的催化性能,且催化效果可能更好。
Abstract:
The possibility of catalytic hydrogen production from water on Ru(Ⅱ)NNN complex designed by replacing the PNN ligand of Ru(Ⅱ)PNN complex with the NNN ligand was investigated.Results calculated with density functional theory(DFT)method showed that on the Ru(Ⅱ)NNN complex the activation free energy for the rate-determining step,the formation of H2 molecule,was decreased to 147.7 kJ/mol.By contrast,the activation free energy for the corresponding step on the Ru(Ⅱ)PNN complex was 157.3 kJ/mol.Moreover,the overall reaction of H2 production on the Ru(Ⅱ)PNN complex was weakly endothermic,but the same reaction on the Ru(Ⅱ)NNN complex was weakly exothermic,being more advantageous in thermodynamics.Accordingly,it was suggested that the Ru(Ⅱ)NNN complex was a promising catalyst for hydrogen production from water,and its catalytic activity might be better than that of the Ru(Ⅱ)PNN complex.

参考文献/References:

[1] HAN Z J,EISENBERG R.Fuel from water:the photochemical generation of hydrogen from water[J].Accounts of chemical research,2014,47(8):2537.
[2] BARBER J.Photosynthetic energy conversion:natural and artificial[J].Chemical society reviews,2009,38(1):185.
[3] CHEN X B,SHEN S H,GUO L J,et al.Semiconductor-based photocatalytic hydrogen generation[J].Chemical reviews,2010,110(11):6503.
[4] TEETS T S,NOCERA D G.Photocatalytic hydrogen production[J].Chemical communications,2011,47(33):9268.
[5] YANG J H,WANG D G,HAN H X,et al.Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J].Accounts of chemical research,2013,46(8):1900.
[6] OZAWA H,HAGA M A,SAKAI K.A photo-hydrogen-evolving molecular device driving visible-light-induced EDTA-reduction of water into molecular hydrogen[J].Journal of the American chemical society,2006,128(15):4926.
[7] ELVINGTON M,BROWN J,ARACHCHIGE S M,et al.Photocatalytic hydrogen production from water employing a Ru,Rh,Ru molecular device for photoinitiated electron collection[J].Journal of the American chemical society,2007,129(35):10644.
[8] GARTNER F,SUNDARAJU B,SURKUS A E,et al.Light-driven hydrogen generation:efficient iron-based water reduction catalysts[J].Angewandte chemie-international edition,2009,48(52):9962.
[9] WANG J,WHITE T A,ARACHCHIGE S M,et al.A new structural motif for photoinitiated electron collection:Ru,Rh bimetallics providing insight into H2 production via photocatalysis of water reduction by Ru,Rh,Ru supramolecules[J].Chemical communications,2011,47(15):4451.
[10] DU P W,EISENBERG R.Catalysts made of earth-abundant elements(Co,Ni,Fe)for water splitting:recent progress and future challenges[J].Energy & environmental science,2012,5(3):6012.
[11] KNOLL J D,HIGGINS S H,WHITE T A,et al.Subunit variation to uncover properties of polyazine-bridged Ru(Ⅱ),Pt(Ⅱ)supramolecules with low lying charge separated states providing insight into the functioning as H2O reduction photocatalysts to produce H2[J].Inorganic chemistry,2013,52(17):9749.
[12] GROSS M A,REYNAL A,DURRANT J R,et al.Versatile photocatalytic systems for H2 generation in water based on an efficient dubois-type nickel catalyst[J].Journal of the American chemical society,2014,136(1):356.
[13] STOLL T,GENNARI M,FORTAGE J,et al.An efficient Ru-RhⅡI-Ru polypyridyl photocatalyst for visible light-driven hydrogen production in aqueous solution[J].Angewandte chemie-international edition,2014,53(6):1654.
[14] ZEE D Z,CHANTAROJSIRI T,LONG J R,et al.Metal-polypyridyl catalysts for electro-and photochemical reduction of water to hydrogen[J].Accounts of chemical research,2015,48(7):2027.
[15] KOHL S W,WEINER L,SCHWARTSBURD L,et al.Consecutive thermal H2 and light-induced O2 evolution from water promoted by a metal complex[J].Science,2009,324:74.
[16] LI J,SHIOTA Y,YOSHIZAWA K.Metal-ligand cooperation in H2 production and H2O decomposition on a Ru(Ⅱ)PNN complex:the role of ligand dearomatization-aromatization[J].Journal of the American chemical society,2009,131(38):13584.
[17] BECKE A D.Density-functional thermochemistry:3.the role of exact exchange[J].The journal of chemical physics,1993,98(7):5648.
[18] FRISCH M J,TRUCKS G W,SCHLEGEL H B,et al.Gaussian 09,Revision D.01[CP].Wallingford:Gaussian,Inc.2013.
[19] DUNNING T H.Gaussian-basis sets for use in correlated molecular calculations:1.the atoms boron through neon and hydrogen[J].The journal of chemical physics,1989,90(2):1007.
[20] DOLG M.Effective core potentials[M]//GROTENDORST J.Modern Methods and Algorithms of Quantum Chemistry.Jülich:John von Neumann Institute for Computing,2000.
[21] MARTIN J M L,SUNDEMANN A.Correlation consistent valence basis sets for use with the Stuttgart-Dresden-Bonn relativistic effective core potentials:the atoms Ga-Kr and In-Xe[J].The journal of chemical physics,2001,14(8):3408.
[22] MIERTUS S,SCROCCO E,TOMASI J.Electrostatic interaction of a solute with a continuum:a direct utilization of ab initio molecular potentials for the prevision of solvent effects[J].Chemical physics,1981,55(1):117.
[23] MIERTUS S,TOMASI J.Approximate evaluations of the electrostatic free-energy and internal energy changes in solution processes[J].Chemical physics,1982,65(2):239.
[24] COSSI M,BARONE V,CAMMI R,et al.Ab initio study of solvated molecules:a new implementation of the polarizable continuum model[J].Chemical physics letters,1996,255(4/5/6):327.
[25] YANG X Z,HALL M B.Mechanism of water splitting and oxygen-oxygen bond formation by a mononuclear ruthenium complex[J].Journal of the American chemical society,2010,132(1):120.
[26] TSENG K N T,KAMPF J W,SZYMCZAK N K.Base-free,acceptorless,and chemoselective alcohol dehydrogenation catalyzed by an amide-derived NNN-ruthenium(Ⅱ)hydride complex[J].Organometallics,2013,32(7):2046.
[27] SINDHUJA E,RAMESH R.Direct synthesis of imines from primary alcohols and amines using an active ruthenium(Ⅱ)NNN-pincer complex[J].Tetrahedron letters,2014,55(40):5504.

备注/Memo

备注/Memo:
收稿日期:2015-11-02
基金项目:国家重点基础研究发展计划(973计划)(2013CB733505,2013CB733501); 国家自然科学基金(91334202); 江苏省自然科学基金(BK2012421); 教育部博士点专项科研基金(20123221120015); 江苏高校优势学科建设工程
作者简介:刘莎(1991—),女,山东枣庄人,硕士,主要研究方向为CO2转化的量子化学计算; 黎军(联系人),教授,E-mail: lijun@njtech.edu.cn.
引用本文:刘莎,黎军,陆小华.新型均相催化产氢Ru(Ⅱ)NNN配合物的理论预测[J].南京工业大学学报(自然科学版),2017,39(2):133-138..
更新日期/Last Update: 2017-03-20