|本期目录/Table of Contents|

[1]徐源,陈柳柳,范梦婕,等.聚苯胺-多壁碳纳米管修饰生物阴极微生物电解池产氢性能[J].南京工业大学学报(自然科学版),2016,38(03):25-30.[doi:10.3969/j.issn.1671-7627.2016.03.005]
 XU Yuan,CHEN Liuliu,FAN Mengjie,et al.Hydrogen production of microbial electrolysis cell with biocathode modified by polyaniline-multiwalled carbon nanotubes[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2016,38(03):25-30.[doi:10.3969/j.issn.1671-7627.2016.03.005]
点击复制

聚苯胺-多壁碳纳米管修饰生物阴极微生物电解池产氢性能()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
38
期数:
2016年03期
页码:
25-30
栏目:
出版日期:
2016-05-28

文章信息/Info

Title:
Hydrogen production of microbial electrolysis cell with biocathode modified by polyaniline-multiwalled carbon nanotubes
文章编号:
1671-7627(2016)03-0025-06
作者:
徐源1陈柳柳1范梦婕1陈英文1祝社民2沈树宝1
1.南京工业大学 生物与制药工程学院,江苏 南京 210009; 2.南京工业大学 材料科学与工程学院,江苏 南京 210009
Author(s):
XU Yuan1CHEN Liuliu1FAN Mengjie1CHEN Yingwen1ZHU Shemin2SHEN Shubao1
1.College of Biotechnology and Pharmaceutical Engineering,Nanjing Tech Technology,Nanjing 210009,China; 2.College of Materials Science and Engineering,Nanjing Tech University,Nanjing 210009,China
关键词:
聚苯胺 多壁碳纳米管 修饰 生物阴极 微生物电解池 产氢
Keywords:
polyaniline multiwalled carbon nanotubes modification biocathode microbial electrolysis cell hydrogen production
分类号:
TK91
DOI:
10.3969/j.issn.1671-7627.2016.03.005
文献标志码:
A
摘要:
采用原位化学氧化聚合法合成了聚苯胺-多壁碳纳米管复合材料,成功构建了修饰生物阴极型微生物电解池,通过聚苯胺-多壁碳纳米管复合材料的耦合作用,提高体系产氢性能,并通过对外加电压、电极间距、电解质浓度等外部操作参数的优化,进一步提高体系性能。实验结果表明,修饰生物阴极实现同步处理废水产氢,表现出优于未修饰生物阴极(MEC)的性能。在外加电压0.9 V、电极间距3 cm、电解质浓度100 mmol/L操作条件下,体系性能最佳。此时聚苯胺-碳纳米管修饰生物阴极微生物电解池H2产率可达0.83 m3/(m3·d),COD去除率为89.3%,阴极H2回收率为51%。
Abstract:
Polyaniline-multiwalled carbon nanotubes were synthesized by in situ chemical oxidation,and microbial electrolysis cells(MEC)with a biocathode modified by polyaniline-multiwalled carbon nanotubes were successfully constructed.The hydrogen production was improved by the coupling effect of polyaniline-multiwalled carbon nanotube. The operating parameters,including the applied voltage,the electrode spacing and the electrolyte concentration were optimized. The results showed that hydrogen production and wastewater treatment were simultaneously achieved in the system and the modified biocathode exhibited better performance than original biocathode did.The hydrogen yield reached 0.83 m3/(m3·d),COD removal rate was 89.3% and cathodic hydrogen recovery was 51%,with the applied voltage 0.9 V,electrode spacing 3 cm, and phosphate buffer solution(PBS)concentration 100 mmol/L.

参考文献/References:

[1] ROZENDAL R A,HAMELERS H V M,EUVERINK G J W,et al.Principle and perspectives of hydrogen production through biocatalyzed electrolysis[J].International journal of hydrogen energy,2006,31:1632.
[2] LOGAN B E,CALL D,CHENG S,et al.Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J].Environmental science & technology,2008,42(23):8630.
[3] SELEMBO P A,MERRILL M D,LOGAN B E.The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells[J].Journal of power sources,2009,190(2):271.
[4] LEE H S,VERMAAS W F J,RITTMANN B E.Biological hydrogen production:prospects and challenges[J].Trends in biotechnology,2010,28(5):262.
[5] LOGAN B E,RABAEY K.Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies[J].Science,2012,337(6095):686.
[6] ROZENDAL R A,JEREMIASSE A W,HAMELERS H V M,et al.Hydrogen production with a microbial biocathode[J].Environmental science & technology,2007,42(2):629.
[7] JEREMIASSE A W,HAMELERS H V M,BUISMAN C J N.Microbial electrolysis cell with a microbial biocathode[J].Bioelectrochemistry,2010,78(1):39.
[8] LOGAN B E.Microbial fuel cells[M].New York:John Wiley & Sons,2008.
[9] JEREMIASSE A W,HAMELERS H V M,SAAKES M,et al.Ni foam cathode enables high volumetric H2 production in a microbial electrolysis cell[J].International journal of hydrogen energy,2010,35(23):12716.
[10] SELEMBO P A,MERRILL M D,LOGAN B E.The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells[J].Journal of power sources,2009,190(2):271.
[11] HU H,FAN Y,LIU H.Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts[J].International journal of hydrogen energy,2009,34(20):8535.
[12] XU Y,JIANG Y,CHEN Y,et al.Hydrogen production and wastewater treatment in a microbial electrolysis cell with a biocathode[J].Water environment research,2014,86(7):649.
[13] CROESE E,PEREIRA M A,EUVERINK G W.Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell [J].Applied microbiology and biotechnology,2011,92(5):1083.
[14] PHILIP B,XIE J N,ABRAHAM J K,et al.Polyaniline/carbon nanotube composites:starting with phenylamino functionalized carbon nanotubes [J].Polymer bulletin,2005,53(2):127.
[15] WU T M,LIN Y W,LIAO C S.Preparation and characterization of polyaniline/multi-walled carbon nanotube composites[J].Carbon,2005,43(4):734.
[16] LOVLEY D R,PHILLIPS E J P.Novel mode of microbial energy metabolism:organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J].Applied and environmental microbiology,1988,54(6):1472.
[17] AMERICAN PUBLIC HEALTH ASSOCIATION.Standard methods for the examination of water and wastewater[M].19th ed.Washington D C:American Public Health Association,1995.

备注/Memo

备注/Memo:
收稿日期:2015-09-11
基金项目:国家自然科学基金(21106072,51172107); 国家科技支撑计划(2012BAE01B03-3); 教育部高等学校博士学科点专项科研基金(20113221110004)
作者简介:徐源(1984—),男,黑龙江双鸭山人,博士生,主要研究方向为生物电化学; 沈树宝(联系人),教授,E-mail:zsbshen@njtech.edu.cn.
引用本文:徐源,陈柳柳,范梦婕,等.聚苯胺-多壁碳纳米管修饰生物阴极微生物电解池产氢性能[J].南京工业大学学报(自然科学版),2016,38(3):25-30..
更新日期/Last Update: 2016-05-20