|本期目录/Table of Contents|

[1]陈兵兵,周剑秋,刘振.热扩散对Li电池空心球形颗粒电极的影响[J].南京工业大学学报(自然科学版),2016,38(03):1-7.[doi:10.3969/j.issn.1671-7627.2016.03.001]
 CHEN Bingbing,ZHOU Jianqiu,LIU Zhen.Effects of thermal diffusion in hollow lithium ion battery with spherical particle electrode[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2016,38(03):1-7.[doi:10.3969/j.issn.1671-7627.2016.03.001]
点击复制

热扩散对Li电池空心球形颗粒电极的影响()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
38
期数:
2016年03期
页码:
1-7
栏目:
出版日期:
2016-05-28

文章信息/Info

Title:
Effects of thermal diffusion in hollow lithium ion battery with spherical particle electrode
文章编号:
1671-7627(2016)03-0001-07
作者:
陈兵兵周剑秋刘振
南京工业大学 机械与动力工程学院,江苏 南京 211800
Author(s):
CHEN BingbingZHOU JianqiuLIU Zhen
College of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 211800,China
关键词:
Li离子电池 扩散应力 热扩散 空心球形颗粒
Keywords:
lithium-ion battery diffusion stress thermal diffusion hollow spherical particles.
分类号:
TM912
DOI:
10.3969/j.issn.1671-7627.2016.03.001
文献标志码:
A
摘要:
空心球体模型被用来研究热扩散机制对空心球形纳米颗粒电极中应力变化的影响。在锂化过程中,电极材料的体积膨胀和应力变化将随着载荷和热扩散的变化而变化。随着温度的增加,径向应力的中间区域变化明显,而环向应力在空心球形电极的内部和外部的部分变化明显。当最大拉伸环向应力热量的减少量比临界断裂强度大得多时,可能会发生裂纹形核和断裂。因此电极充放电过程中的浓度和温度的变化对电极材料的扩散应力产生重要的影响。
Abstract:
A new hollow spherical model was established to account for thermal diffusion effect on hollow electrode,focusing on the effect of the mechanism of temperature on stress variation in the hollow spherical nanoparticles electrode. Concentrated load and heat caused the volume expansion with the radius changing. With the increase of temperature,the radial stress changed significantly in the middle area,while the hoop stress changed obviously in the both internal and external part of the hollow spherical electrode.When the maximum tensile ring’s reduction of heat stress was much larger than the critical fracture strength,crack nucleation and fracture might occur. A combination of concentration and temperature stress intensity was considered as an important factor for electrode material.

参考文献/References:

[1] ARMAND M,TARASCON J M.Building better batteries[J].Nature,2008,451:652.
[2] SERVICE R F.Getting there[J].Science,2011,332:1494.
[3] CASAS C D,LI W.A review of application of carbon nanotubes for lithium ion battery anode material[J].Journal of power sources,2012,208:74.
[4] XIAO X,LIU P,VERBRUGGE M W.Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries[J].Journal of power sources,2011,196:1409.
[5] HERTZBERG B,ALEXEEV A,YUSHIN G.Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space[J].Journal of the American chemical society.2010,132:8548.
[6] RYU I,CHOI J W,CUI Y,et al.Size-dependent fracture of Si nanowire battery anodes[J].Journal of the mechanics and physics of solids,2011,59:1717.
[7] BOURDERAU T B S,SCHLEICH D M.Amorphous silicon as a possible anode material for Li-ion batteries[J].Journal of power sources,1999,81:233.
[8] MAGASINSKI A,DIXON P,HERTZBERG B,et al.High-performance lithium-ion anodes using a hierarchical bottom-up approach[J].Nature materials,2010,9:353.
[9] LIU X H,ZHANG L Q,ZHONG L,et al.Ultrafast electrochemical lithiation of individual Si nanowire anodes[J].Nano letters,2011,11:2251.
[10] PARK M H,KIM M G,JOO J,et al.Silicon nanotube battery anodes[J].Nano letters,2009,9:3844.
[11] LEE J K,SMITH K B,HAYNER C M,et al.Silicon nanoparticles-graphene paper composites for Li-ion battery anodes[J].Chemical communications,2010,46:2025.
[12] PRUSSIN S.Generation and distribution of dislocations by solute diffusion[J].Journal of applied physics,1961,32:1876.
[13] CHEN B,ZHOU J,PANG X.Fracture damage of nanowire lithium-ion battery electrode affected by diffusion-induced stress and bending during lithiation[J].RSC advances,2014,4:21072.
[14] CHEN B,ZHOU J,ZHU J.Diffusion induced stress and the distribution of dislocations in a nanostructured thin film electrode during lithiation[J].RSC advances,2014,4:64216.
[15] CHEN B,ZHOU J,ZHU J.Effect of misfit dislocation on Li diffusion and stress in a phase transforming spherical electrode[J].Journal of the electrochemical society,2015(8):H493.
[16] ZHANG X,SHYY W,SASTRY A M.Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles[J].Journal of the electrochemical society,2007,154:A910.
[17] YE Y,SHI Y,CAI N.Electro-thermal modeling and experimental validation for lithium ion battery[J].Journal of power sources,2012,199:227.
[18] TIMOSHENKO S,GOODIER J N.Theory of elasticity[M].New York:McGraw-Hill,1951.
[19] YAO Y,MCDOWELL M T,RYU I.Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life[J].Nano letters,2011,11:2949.
[20] CRANK J.The Mathematics of diffusion[M].London:Oxford University,1980.
[21] LI J,FANG Q H,WU H,et al.Investigation into diffusion induced plastic deformation behavior in hollow lithium ion battery electrode revealed by analytical model and atomistic simulation[J].Electrochimica acta,2015,178:597.

备注/Memo

备注/Memo:
收稿日期:2015-06-26
基金项目:国家自然科学基金(10872087); 江苏省科技支撑计划(BE2009170); 湖北省优秀中青年人才项目(Q20111501); 霍英东青年教师基金(101005)
作者简介:陈兵兵(1990—),男,安徽六安人,博士生,主要研究方向为Li电池电极力学; 周剑秋(联系人),教授,E-mail:zhouj@njtech.edu.cn.
引用本文:陈兵兵,周剑秋,刘振.热扩散对Li电池空心球形颗粒电极的影响[J].南京工业大学学报(自然科学版),2016,38(3):1-7..
更新日期/Last Update: 2016-05-20