|本期目录/Table of Contents|

[1]陆超,陈捷,洪荣晶,等.基于粒子群优化支持向量机的回转支承寿命状态识别[J].南京工业大学学报(自然科学版),2016,38(01):56-61.[doi:10.3969/j.issn.1671-7627.2016.01.010]
 LU Chao,CHEN Jie,HONG Rongjing,et al.Slewing bearing life state recognition based on support vector machine optimized by particle swarm[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2016,38(01):56-61.[doi:10.3969/j.issn.1671-7627.2016.01.010]
点击复制

基于粒子群优化支持向量机的回转支承寿命状态识别()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
38
期数:
2016年01期
页码:
56-61
栏目:
出版日期:
2016-01-10

文章信息/Info

Title:
Slewing bearing life state recognition based on support vector machine optimized by particle swarm
文章编号:
1671-7627(2016)01-0056-06
作者:
陆超陈捷洪荣晶封杨
南京工业大学 机械与动力工程学院,江苏 南京 211800
Author(s):
LU ChaoCHEN JieHONG RongjingFENG Yang
College of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 211800,China
关键词:
回转支承 支持向量机 粒子群 寿命状态识别
Keywords:
slewing bearing support vector machine particle swarm optimization life state recognition
分类号:
TH17;TP18
DOI:
10.3969/j.issn.1671-7627.2016.01.010
文献标志码:
A
摘要:
回转支承已在工程机械和风力发电等方面得到广泛应用。为了对其健康状态作出正确判断,采用经粒子群算法优化的支持向量机模型来对其寿命状态做出准确识别。寿命状态识别的关键问题是特征向量的提取。为了得到有效而又全面的寿命状态信息,从时域和时频域方面提取多个特征向量进行综合分析,从而实现了小样本数据下信息的最大挖掘。最后以回转支承全寿命实验对该方法进行检验,结果表明,该模型的效果优于传统的支持向量机以及单变量模型,具有实际工程应用价值。
Abstract:
Slewing bearing had been widely used in engineering machinery and wind power.In order to make the right judgments on their health status,the support vector machine(SVM)optimized by particle swarm algorithm model was proposed to make an accurate identification of the life state.The key problems of life state recognition was the feature vector extraction.To obtain an effective and comprehensive life state information of slewing bearing,multiple-feature vectors from time domain and time frequency domain were extracted,thus the information on small sample could be extracted as much as possible.Finally,the slewing bearing life experiments were used to test the model.Results demonstrated that the proposed model was better than the traditional SVM and univariate model,so it could be applied in the practical engineering.

参考文献/References:

[1] HUANG Runqing,XI Lifeng,LI Xinglin,et al.Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods[J].Mechanical systems and signal processing,2007,21:193.
[2] MAHAMAD A K,SAON S,HIYAMA T.Predicting remaining useful life of rotating machinery based artificial neural network[J].Computers and mathematics with applications,2010,60:1078.
[3] CAESARENDRA W,KOSASIH P B.An application of nonlinear feature extraction:a case study for low speed slewing bearing condition monitoring and prognosis[C]//International Conference on Advanced Intelligent Mechatronics.New York:IEEE/ASME,2013,1713.
[4] KOSASIH P B,CAESARENDRA W,TIEU K.Degradation trend estimation and prognosis of large low speed slewing bearing lifetime[J].Applied mechanics and materials,2014,493:343.
[5] 刘永前,徐强,田德.基于萤火虫神经网络的轴承性能退化程度评估[J].机械传动,2014,38(5):107.
[6] KUMAR H S,SRINIVASA P P,SRIRAM N S.ANN based evaluation of performance of wavelet transform for condition monitoring of rolling element bearing[J].Procedia engineering,2013,64:805.
[7] 张梅军,王闯,陈灏.IMF能量和RBF神经网络相结合在滚动轴承故障诊断中的应用研究[J].故障与诊断,2012(6):63.
[8] CUI Huimin,ZHAO Ruimei,HOU Yanli.Improved threshold denoising method based on wavelet transform[J].Physics procedia,2012,33:1354.
[9] 邢秀玉,刘鸿宇,黄武.基于加速度的小波能量特征及样本熵组合的步态分类算法[J].传感技术学报,2013(4):543.
[10] LUO Yuan,WU Caiming,ZHANG Yi.Facial expression recognition based on fusion feature of PCA and LBP with SVM[J].Optik,2013,124:2767.
  
[11] YU Huanhuan,CHEN Rongda,ZHANG Guoping.A SVM stock selection model within PCA[J].Procedia computer science,2014,31:406.
[12] XU Hongbo,CHEN Guohua.An intelligent fault identification method of rolling bearings based on LSSVM optimized by improved PSO[J].Mechanical systems and signal processing,2013,35:167.
[13] LONG Bing,XIAN Weiming,LI Ming,et al.Improved diagnostics for the incipient faults in analog circuits using LSSVM based on PSO algorithm with Mahalanobis distance[J].Neurocomputing,2014,133:237.

相似文献/References:

[1]刘济宁,吕凤兰,石利利,等.芳香族化合物的快速生物降解性QSBR研究[J].南京工业大学学报(自然科学版),2012,34(05):38.
 LIU Jining,LÜ,Fenglan,et al.QSBR on ready biodegradability of aromatic compounds[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2012,34(01):38.
[2]谢冬华,洪荣晶,王华.回转支承自适应负载的运动控制方法[J].南京工业大学学报(自然科学版),2013,35(04):110.[doi:10.3969/j.issn.1671-7627.2013.04.023]
 XIE Donghua,HONG Rongjing,WANG Hua.Slewing bearing motion control based on adaptive load method[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2013,35(01):110.[doi:10.3969/j.issn.1671-7627.2013.04.023]
[3]崔益虎,张庆武.基于支持向量机的泄爆压力峰值预测模型[J].南京工业大学学报(自然科学版),2014,36(05):107.[doi:10.3969/j.issn.1671-7627.2014.05.019]
 CUI Yihu,ZHANG Qingwu.Prediction model of venting peak pressure in vessel based on support vector machine[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2014,36(01):107.[doi:10.3969/j.issn.1671-7627.2014.05.019]
[4]杨杰,陈捷,徐新庭,等.基于小波-能量模式的回转支承故障诊断方法研究与应用[J].南京工业大学学报(自然科学版),2015,37(04):134.[doi:10.3969/j.issn.1671-7627.2015.04.024]
 YANG Jie,CHEN Jie,XU Xintin,et al.Slewing bearing analysis on fault diagnosis based on wavelet and energy fault mode and its application[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(01):134.[doi:10.3969/j.issn.1671-7627.2015.04.024]
[5]田淑华,王华,洪荣晶.基于多特征集融合与多变量支持向量回归的回转支承剩余寿命评估[J].南京工业大学学报(自然科学版),2016,38(03):50.[doi:10.3969/j.issn.1671-7627.2016.03.009]
 TIAN Shuhua,WANG Hua,HONG Rongjing.Residual life assessment of slewing bearing based on multivariate eigenvalues fusion and support vector regression[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2016,38(01):50.[doi:10.3969/j.issn.1671-7627.2016.03.009]
[6]李媛媛,黄筱调,陈捷,等.基于遗传程序设计的回转支承寿命状态识别[J].南京工业大学学报(自然科学版),2017,39(06):111.[doi:10.3969/j.issn.1671-7627.2017.06.017]
 LI Yuanyuan,HUANG Xiaodiao,CHEN Jie,et al.Life state recognition of slewing bearing based on genetic programming[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2017,39(01):111.[doi:10.3969/j.issn.1671-7627.2017.06.017]

备注/Memo

备注/Memo:
收稿日期:2014-10-23
基金项目:国家自然科学基金( 51375222); 2014年度江苏省教育厅“青蓝工程”
作者简介:陆超(1990—),男,江苏扬州人,硕士,主要研究方向为回转支承寿命预测; 陈捷(联系人),教授,E-mail:820967156@qq.com.
引用本文:陆超,陈捷,洪荣晶,等.基于粒子群优化支持向量机的回转支承寿命状态识别[J].南京工业大学学报(自然科学版),2016,38(1):56-61..
更新日期/Last Update: 2016-01-20