|本期目录/Table of Contents|

[1]张钧波,张敏.幂律非牛顿流体在偏心圆环通道中的流动特性[J].南京工业大学学报(自然科学版),2015,37(06):114-118.[doi:10.3969/j.issn.1671-7627.2015.06.021]
 ZHANG Junbo,ZHANG Min.Characteristics of power-law non-Newtonian fluid flows in eccentric annular channel[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(06):114-118.[doi:10.3969/j.issn.1671-7627.2015.06.021]
点击复制

幂律非牛顿流体在偏心圆环通道中的流动特性()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
37
期数:
2015年06期
页码:
114-118
栏目:
出版日期:
2015-11-20

文章信息/Info

Title:
Characteristics of power-law non-Newtonian fluid flows in eccentric annular channel
文章编号:
1671-7627(2015)06-0114-05
作者:
张钧波1张敏2
1.南京师范大学 泰州学院,江苏 泰州 225300; 2.南京理工大学 能源与动力工程学院,江苏 南京 210094
Author(s):
ZHANG Junbo1ZHANG Min2
1.Taizhou College,Nanjing Normal University,Taizhou 225300,China; 2.School of Energy and Power Engineering,Nanjing University of Science & Technology,Nanjing 210094,China
关键词:
有限体积法 基元中心法 幂律流体 偏心圆环通道
Keywords:
finite volume method cell-based central method power-law fluid eccentric annular channel
分类号:
O373
DOI:
10.3969/j.issn.1671-7627.2015.06.021
文献标志码:
A
摘要:
本文以幂律非牛顿流体为研究对象,针对幂律非牛顿流体黏性系数的高阶非线性特性的问题,在笛卡尔坐标系中运用基元中心法对非线性黏性系数进行离散,采用有限体积法对幂律非牛顿流体在偏心圆环通道中的充分发展层流进行数值计算。结果表明:偏心率是造成偏心圆环通道内流体速度分布不均的主要原因,而流体的流动速度随幂律因子的减小而减小。当偏心圆环通道的偏心率较小时,随着半径比的增大,基于达西摩擦因子(f)fRe(Re为雷诺数)数值先增大后减小。
Abstract:
To solve the problem of the highly non-linear feature of the non-Newtonian fluid viscosity coefficient,a cell-based central method was used for the non-linear viscosity coefficient discretization in the Cartesian coordinate system.Finite volume method(FVM)was adopted for numerical simulation of fully developed laminar flow in eccentric annular channel.Results showed that the eccentricity was the main cause for the asymmetrical velocity distribution in eccentric annular channel.The velocity decreased with the decrease of the power-law factor.When the eccentricity of eccentric annular channel was smaller,fRe firstly increased with the increase of radius ratio,and then decreased.

参考文献/References:

[1] 袁世伟,赖焕新.幂律非牛顿流体的有限体积算法[J].华东理工大学学报:自然科学版,2013,39(3):364-369.
[2] 尹析明.环形套管内非牛顿流体非定常旋转流动谱方法研究[J].四川大学学报:自然科学版,2009,46(4):1016-1020.
[3] 沈丹丹,朱宏武,丁矿,等.水下卧式采油树内部环空通道的流动特性分析[J].石油机械,2014,42(2):42-44.
[4] 袁祖强,刘建华.非牛顿流体幂指式流变模型的实验验证[J].南京化工大学学报:自然科学版,2001,23(3):60-62.
[5] Nobari M R H,Mehrabani M T.A numerical study of fluid flow and heat transfer in eccentric curved annuli [J].International Journal of Thermal Sciences,2010,49:380-396.
[6] Bartosik B.Application of rheological models in prediction of turbulent slurry flow [J].Flow Turbulence Combust,2010,84:277-279.
[7] Fang P P,Manglik R M,Jog M A.Characteristics of laminar viscous shear-thinning fluid flows in eccentric annular channels [J].Journal of Non-Newtonian Fluid Mechanics,1999,84:1-17.
[8] Patankar S V.Numerical and heat transfer fluid flow[M].Washington D.C.:Hemisphere,1980.
[9] Zhang M.Modeling of radiative heat transfer and diffusion processes using unstructured grid[D].Cookeville:Tennessee Technological University,2000.
[10] Escudier M P,Gouldson I W.Effects of center body rotation on laminar flow through an eccentric annulus[M]//Adrian R J,Durao D F G,Durst Franz et al.Developments in laser techniques and applications to fluid mechanics.Berlin:Springer,1997.

相似文献/References:

[1]徐海涛,桑芝富,王晓东.风绕塔体流动的数值模拟[J].南京工业大学学报(自然科学版),2002,24(02):56.[doi:10.3969/j.issn.1671-7627.2002.02.013]
[2]魏玲,童艳,陈桂英,等.加气混凝土墙体非稳态传热的数值模拟[J].南京工业大学学报(自然科学版),2003,25(02):53.[doi:10.3969/j.issn.1671-7627.2003.02.012]

备注/Memo

备注/Memo:
收稿日期:2014-06-07
基金项目:南京师范大学泰州学院校级科研项目(Q201241)
作者简介:张钧波(1982—),男,河南信阳人,讲师,硕士,主要研究方向为计算流体力学,E-mail:zhangjunbo555@163.com.
引用本文:张钧波,张敏.幂律非牛顿流体在偏心圆环通道中的流动特性[J].南京工业大学学报:自然科学版,2015,37(6):114-118..
更新日期/Last Update: 2015-11-20