|本期目录/Table of Contents|

[1]余洋,周叮,方海,等.弹性地基上含格构复合材料夹层梁的能量法静力分析[J].南京工业大学学报(自然科学版),2015,37(05):79-85.[doi:10.3969/j.issn.1671-7627.2015.05.013]
 YU Yang,ZHOU Ding,FANG Hai,et al.Static analysis of composite sandwich beam with lattice on elastic foundation[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(05):79-85.[doi:10.3969/j.issn.1671-7627.2015.05.013]
点击复制

弹性地基上含格构复合材料夹层梁的能量法静力分析()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
37
期数:
2015年05期
页码:
79-85
栏目:
出版日期:
2015-09-10

文章信息/Info

Title:
Static analysis of composite sandwich beam with lattice on elastic foundation
文章编号:
1671-7627(2015)05-0079-07
作者:
余洋周叮方海刘伟庆
南京工业大学 土木工程学院,江苏 南京 211800
Author(s):
YU Yang ZHOU Ding FANG Hai LIU Weiqing
College of Civil Engineering, Nanjing Tech University, Nanjing 211800, China
关键词:
能量法 复合材料夹层梁 格构 双参数模型 Chebyshev多项式
Keywords:
energy principle composite sandwich beam lattice two-parameter model Chebyshev polynomial
分类号:
TU13
DOI:
10.3969/j.issn.1671-7627.2015.05.013
文献标志码:
A
摘要:
基于能量法分析弹性地基上含格构复合材料夹层梁的静力学性能,采用双参数模型描述芯层和地基的力学性能; 使用竖向弹簧和扭转弹簧描述格构的力学性能。取边界函数与Chebyshev多项式的积作为上下面层的挠度试函数,既能保证试函数满足结构的几何边界条件,又能保证解的快速收敛性和数值计算的鲁棒性,计算结果与有限元分析相吻合。对影响结构挠度的上面层厚度、芯层厚度、格构宽度和格构数量进行了参数化分析,结果表明:面层厚度、格构宽度和数量是影响结构力学性能的重要参数,而芯层厚度的影响相对较小。在实际工程设计中,可通过合理选择夹层梁的面层厚度、格构宽度和数量达到既节约成本又满足力学性能要求的双重目的。
Abstract:
A static analysis on sandwich beams with lattice on an elastic foundation was made based on energy principle. Two-parameter model was used to describe the function of core and foundation. Besides, the vertical spring and the torsional spring were used to describe the function of lattice. The product of Chebyshev polynomial and boundary function was used as deflection trial function. Because the outstanding mathematical features of Chebyshev polynomial could guarantee rapid convergence and the robustness of numerical calculation. Meanwhile, boundary function could ensure that trial function met the the geometric boundary conditions of the structure. The results were consistent with that of the finite-element analysis, thus it indicated the correctness of the method used in this essay. Moreover, this essay made analysis on the heights of the upper surface layer, the length of the lattice as well as the quantity of the lattice from a parameter perspective. The results showed that the thickness of the layer and the number, and width of the lattices were the most important parameters while the effects of the thickness on the core were relatively small. The low cost and the satisfied mechanical properties were obtained by properly choosing the thickness of the layer and the number, and width of the lattices in the design of sandwich beams.

参考文献/References:

[1] 方海,刘伟庆,万里.格构增强型复合材料夹层结构的制备与受力性能[J].玻璃钢/复合材料,2009(4):67-69.
[2] 方海,刘伟庆,万里.新型复合材料快速抢建抢修路面垫板[J].南京工业大学学报:自然科学版,2009,31(1):92-96.
[3] 王平,方海,张强.桥梁复合材料防撞方案研究[J].世界桥梁,2012,40(3):46-49.
[4] Manalo A C,Aravinthan T,Karunasena W,et al.Flexural behaviour of structural fibre composite sandwich beams in flatwise and edgewise positions[J].Composite Structures,2010,92:984-995.
[5] Lou Jia,Wang Bing,Ma Li,et al.Free vibration analysis of lattice sandwich beams under several typical boundary conditions[J].Acta Mechanica Solida Sinica,2013,26(5):458-467.
[6] Dai Jin,Thomas Hahn H.Flexural behavior of sandwich beams fabricated by vacuum-assisted resin transfer molding[J].Composite Structures,2003,61:247-253.
[7] Davalos Julio F,Qiao Pizhong.Vinod Ramayanam,et al.Torsion of honeycomb FRP sandwich beams with a sinusoidal core configuration[J].Composite Structures,2009,88:97-111.
[8] Alipour M M,Shariyat M.An analytical global-local Taylor transformation-based vibration solution for annular FGM sandwich plates supported by nonuniform elastic foundations[J].Archives of Civil and mechanical Engineering,2014,14:6-24.
[9] Shen H I S,Zhu Z H.Postbuckling of sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations[J].European Journal of Mechanics A/Solids,2012,35:10-21.
[10] Wang Z X,Shen H S.Nonlinear analysis of sandwich plates with FGM face sheets resting on elastic foundations[J].Composite Structures,2011,93:2521-2532.
[11] 鹫津久一郎.能量原理[M].尹泽勇,江伯南,译.北京:中国建筑工业出版社,1977.
[12] Timoshenko S P,Goodier J N.Theory of elasticity[M].New York:McGraw-Hill,1970.
[13] 孙训方,方孝淑,关来泰.材料力学[M].北京:高等教育出版社,2002.
[14] 龙驭球.弹性地基梁的计算[M].北京:人民教育出版社,1981.
[15] 陕西省建筑工程局科学研究所.黄土地基刚度系数的试验研究[J].勘查技术资料,1975,16:13-26.
[16] Fwa T F,Shi X P,Tan S A.Use of pasternak foundation model in concrete pavement analysis[J].Transp Eng,1996,122(4):323-328.
[17] Coskun I,Engin H,Ozmutlu A.Response of a finite beam on a tensionless Pasternak foundation under symmetric and asymmetric loading[J].Struct Eng Mech,2008,30(1):21-36.
[18] Zhou Ding.Three-dimensional vibration analysis of structural elements using chebyshev-ritz method[M].Beijing:Science Press,2007.

备注/Memo

备注/Memo:
收稿日期:2014-10-30
基金项目:国家重点基础研究发展计划(973计划)(2012CB026205); 国家自然科学基金(51238003); 江苏省交通运输科技项目(2014Y01)
作者简介:余洋(1988—),男,河南南阳人,硕士,主要研究方向为结构复合材料; 周叮(联系人),教授,E-mail: dingzhou57@yahoo.com.
引用本文:余洋,周叮,方海,等.弹性地基上含格构复合材料夹层梁的能量法静力分析[J].南京工业大学学报:自然科学版,2015,37(5):79-85..
更新日期/Last Update: 2015-09-20