|本期目录/Table of Contents|

[1]杨杰,陈捷,徐新庭,等.基于小波-能量模式的回转支承故障诊断方法研究与应用[J].南京工业大学学报(自然科学版),2015,37(04):134-140.[doi:10.3969/j.issn.1671-7627.2015.04.024]
 YANG Jie,CHEN Jie,XU Xintin,et al.Slewing bearing analysis on fault diagnosis based on wavelet and energy fault mode and its application[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(04):134-140.[doi:10.3969/j.issn.1671-7627.2015.04.024]
点击复制

基于小波-能量模式的回转支承故障诊断方法研究与应用()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
37
期数:
2015年04期
页码:
134-140
栏目:
出版日期:
2015-07-09

文章信息/Info

Title:
Slewing bearing analysis on fault diagnosis based on wavelet and energy fault mode and its application
文章编号:
1671-7627(2015)04-0134-07
作者:
杨杰陈捷徐新庭洪荣晶
南京工业大学 机械与动力工程学院,江苏 南京 211800
Author(s):
YANG JieCHEN JieXU XintinHONG Rongjing
College of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 211800,China
关键词:
回转支承 小波分析 频谱分析 小波能量谱 故障诊断
Keywords:
slewing bearing wavelet analysis spectrum analysis wavelet power spectrum fault diagnosis
分类号:
TP206.3
DOI:
10.3969/j.issn.1671-7627.2015.04.024
文献标志码:
A
摘要:
回转支承机械结构和工作条件特殊,导致其故障机制复杂,传统的信号分析方法难以对其进行有效的故障诊断。提出了一种基于小波分解与能量谱相结合的回转支承故障诊断方法。利用小波多尺度、多分辨率的特性,对回转支承振动信号进行多尺度分解; 根据回转支承低频故障特性,对小波分解后的低频区进行频谱分析,再结合各尺度频带能量谱进行回转支承故障诊断。通过对回转支承加速寿命试验中各阶段数据分析表明,该方法能够有效、准确地诊断出回转支承故障模式,相比单一的小波频谱分析诊断精度更高、可靠性更好,具有一定的工程实用价值。
Abstract:
Traditional signal process method was difficult to be efficiently applied to the slewing bearing fault diagnosis due to the complex failure mechanism caused by the particular mechanical structure and special working conditions.A diagnosis method based on wavelet decomposition and energy spectrum was proposed.A multi-scale and multi-resolution attributes of wavelet were used to decompose the vibration of slewing bearing into different frequency bands.According to the low frequency characteristic of slewing bearing,the specific low frequency band spectrum was selected to analyze and combined with the each scale energy spectrum by wavelet decomposition to diagnose.Through accelerating life experiments,the vibration signal of each process stage of slewing bearing was analyzed,and results showed that the method could be used more effectively and accurately for diagnose the slewing bearing failure mode than the single wavelet spectrum analysis.It had potential engineering applications.

参考文献/References:

[1] 叶焱玺,肖汉斌.基于小波分析的大型回转支承故障特征信号的提取[J].武汉理工大学学报,2004,28(6):840-843.
[2] 王兴东,孔建益,刘源.回转支承运行状态的监测方法[J].轴承,2006(3):34-36.
[3] Yong H K,Andy C T,Joseph M.Condition monitoring of low speed bearings:a comparative study of the ultrasound technique versus vibration measurements[C]//Proceedings of the 1st World Congress on Engineering Asset Management.Joseph Mathew:Springer,2006:11-14.
[4] Li Y R,Wang Z g.A new low-frequency resonance sensor for low speed roller bearing monitoring[J].Jouranl of Vibration and Acoustics,2010,132(1):1-8.
[5] Matej Z,Samo Z,Ivan P.Multivariate and multiscale monitoring of large-size low-speed bearing using ensemble empirical mode decomposition method combined with principal component analysis[J].Mechanical Systems and Signal Processing,2010(24):1049-1067.
[6] Matej Z,Samo Z,Ivan P.Non-linear multivariate and multiscale monitoring and signal denoising strategy using kernel principal component analysis combined with ensemble empirical mode decomposition method[J].Mechanical Systems and Signal Processing,2011,25:2631-2653.
[7] Liu Z,Chen J.Monitoring and diagnosis technique on slewing bearing[J].Advanced and Materials Research,2011,156:1478-1483.
[8] 张慧芳,陈捷.大型回转支承故障信号处理方法综述[J].机械设计与制造杂志,2012(3):216-218.
[9] 徐新庭,陈捷,王华,等.风电转盘轴承故障特征参数的确定[J].轴承,2013(11):42-45.
[10] Wahyu C,Prabuono B K.Condition monitoring of naturally damaged slow speed slewing bearing based on ensemble empirical mode decomposition[J].Journal of Mechanical Science and Technology,2013,27(8):2253-2262.
[11] Wahyu C,Buyung K.Circular domain features based condition monitoring for loe speed slewing bearing[J].Mechanical Systems and Signal Processing,2014,45(1):114-138.
[12] Kaydon.Catalog 390 slewing ring turntable bearing[EB/OL].(2012-07-21)[2014-03-10].http://www.kaydonbearings.com.
[13] RotheErde.Slewing bearing[EB/OL].(2007-03-01)[2014-03-10].http://www.Rotheerde.com.
[14] 屈梁生,张西宁,沈玉娣.机械故障诊断理论与方法[M].西安:西安交通大学出版社,2009.
[15] 张景川,曾周末,赖平,等.基于小波能谱和小波信息熵的管道异常振动事件识别方法[J].振动与冲击,2010,29(5):1-4.
[16] 程圣军,于德介,杨宇,等.尺度-小波能量谱在滚动轴承故障诊断中的应用[J].振动工程学报,2004,17(1):82-85.

相似文献/References:

[1]谢冬华,洪荣晶,王华.回转支承自适应负载的运动控制方法[J].南京工业大学学报(自然科学版),2013,35(04):110.[doi:10.3969/j.issn.1671-7627.2013.04.023]
 XIE Donghua,HONG Rongjing,WANG Hua.Slewing bearing motion control based on adaptive load method[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2013,35(04):110.[doi:10.3969/j.issn.1671-7627.2013.04.023]
[2]陆超,陈捷,洪荣晶,等.基于粒子群优化支持向量机的回转支承寿命状态识别[J].南京工业大学学报(自然科学版),2016,38(01):56.[doi:10.3969/j.issn.1671-7627.2016.01.010]
 LU Chao,CHEN Jie,HONG Rongjing,et al.Slewing bearing life state recognition based on support vector machine optimized by particle swarm[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2016,38(04):56.[doi:10.3969/j.issn.1671-7627.2016.01.010]
[3]田淑华,王华,洪荣晶.基于多特征集融合与多变量支持向量回归的回转支承剩余寿命评估[J].南京工业大学学报(自然科学版),2016,38(03):50.[doi:10.3969/j.issn.1671-7627.2016.03.009]
 TIAN Shuhua,WANG Hua,HONG Rongjing.Residual life assessment of slewing bearing based on multivariate eigenvalues fusion and support vector regression[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2016,38(04):50.[doi:10.3969/j.issn.1671-7627.2016.03.009]
[4]李媛媛,黄筱调,陈捷,等.基于遗传程序设计的回转支承寿命状态识别[J].南京工业大学学报(自然科学版),2017,39(06):111.[doi:10.3969/j.issn.1671-7627.2017.06.017]
 LI Yuanyuan,HUANG Xiaodiao,CHEN Jie,et al.Life state recognition of slewing bearing based on genetic programming[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2017,39(04):111.[doi:10.3969/j.issn.1671-7627.2017.06.017]

备注/Memo

备注/Memo:
收稿日期:2014-03-21
基金项目:国家自然科学基金(51375222)
作者简介:杨杰(1991—),男,江苏宜兴人,硕士,主要研究方向为回转支承故障诊断方法; 陈捷(联系人),教授,E-mail:820967156@qq.com.
引用本文:杨杰,陈捷,徐新庭,等.基于小波-能量模式的回转支承故障诊断方法研究与应用[J].南京工业大学学报:自然科学版,2015,37(4):134-140..
更新日期/Last Update: 2015-07-08