|本期目录/Table of Contents|

[1]王坤鹏,陈佳男,张玮皓,等.金属纳米粒子对非晶硅太阳能电池性能影响的理论模拟[J].南京工业大学学报(自然科学版),2015,37(04):109-113.[doi:10.3969/j.issn.1671-7627.2015.04.019]
 WANG Kunpeng,CHEN jianan,ZHANG Weihao,et al.Simulation of metal nanoparticle influence on the performance of amorphous silicon solar cells[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(04):109-113.[doi:10.3969/j.issn.1671-7627.2015.04.019]
点击复制

金属纳米粒子对非晶硅太阳能电池性能影响的理论模拟()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
37
期数:
2015年04期
页码:
109-113
栏目:
出版日期:
2015-07-09

文章信息/Info

Title:
Simulation of metal nanoparticle influence on the performance of amorphous silicon solar cells
文章编号:
1671-7627(2015)04-0109-05
作者:
王坤鹏陈佳男张玮皓冯晓东
南京工业大学 材料科学与工程学院,江苏 南京 210009
Author(s):
WANG KunpengCHEN jiananZHANG WeihaoFENG Xiaodong
College of Materials Science and Engineering,Nanjing Tech University,Nanjing 210009,China
关键词:
非晶硅太阳能电池 有限时域差分 光吸收增强
Keywords:
amorphous silicon solar cells finite difference time domain light absorption enhancement
分类号:
TM914.4
DOI:
10.3969/j.issn.1671-7627.2015.04.019
文献标志码:
A
摘要:
使用时域有限差分(FDTD)方法,在标准太阳光下模拟非晶硅太阳能电池表面上有序排列的Ag或Au纳米颗粒对电池的光吸收增强效应。结果表明:通过改变金属颗粒的直径和粒子周期性间距等不同条件,光吸收的增强效应有规律地变化。结合AMPS-1D模拟软件对非晶硅电池的电学性能进行计算,在标准太阳光下,使用直径为200 nm、周期性间距为600 nm的Ag纳米粒子可以使非晶硅电池效率的提高幅度达到23.4%。
Abstract:
A model based on the finite difference time domain(FDTD)was used to study the light absorption enhancement of amorphous silicon solar cells,in which Ag or Au nanoparticle array was arranged on the surface.It was found that light absorption enhancement was systematically affected by the conditions,such as diameter and the periodic distance of the metal nanoparticles.The simulation of the electrical properties of the corresponding solar cells was also abtained from AMPS-1D.It was found that on standard sunlight spectrum,the improvement of solar cell efficiency was about 23.4% with Ag nanoparticle array,with the diameter of 200 nm and the periodic distance of 600 nm.

参考文献/References:

[1] Atwater H A,Polman A.Plasmonics for improved photovoltaic devices[J].Nature Materials,2010,9(3):205-213.
[2] Yang J,Banerjee A,Guha S.Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies[J].Applied Physics Letters,1997,70(22):2975-2977.
[3] Goetzberger A,Hebling C,Schock H W.Photovoltaic materials,history,status and outlook[J].Materials Science and Engineering Reports,2003,40(1):1-46.
[4] Luque A,Hegedus S.Handbook of photovoltaic science and engineering[M].Chichester:Wiley,2003.
[5] Stuart H R,Hall D G.Island size effects in nanoparticle-enhanced photodetectors[J].Applied Physics,1998,73(26):3815-3817.
[6] Pillai S,Catchpole K R,Trupke T,et al.Surface plasmon enhanced silicon solar cells[J].Journal of Applied Physics,2007,101(9):093105.
[7] Derkacs D,Lim S H,Matheu P,et al.Surface plasmon enhanced silicon solar cells[J].Applied Physics Letter,2006,89(9):093103.
[8] Schaadt D M,Feng B,Yu E T.Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles[J].Applied Physics Letter,2005,86(6):063106.
[9] Lim S H,Mar W,Matheu P,et al.Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles[J].Journal of Applied Physics,2007,101(10):104309.
[10] Sundarajan S P,Grady N K,Mirin N,et al.Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode[J].Nano Letter,2008,8(2):624-630.
[11] Grabar K C,Allison K J,Baker B E,et al.Two-dimensional arrays of colloidal gold particles:a flexible approach to macroscopic metal surfaces[J].Langmuir,1996,12(10):2353-2361.
[12] Evanoff D D,Chumanov G.Size-controlled synthesis of nanoparticles:2.measurement of extinction,scattering,and absorption cross sections[J].Journal of Physical Chemistry B,2004,108(37):13957-13962.
[13] Akimov Y A,Koh W S,Ostrikov K.Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes[J].Optics Express,2009,17(12):10195-10205.
[14] Temple T L,Bagnall D M.Broadband scattering of the solar spectrum by spherical metal nanoparticles[J].Progress in Photovoltaics,2013,21(4):600-611.
[15] Alsawafta M,Wahbeh M,Truong V V.Plasmonic modes and optical properties of gold and silver ellipsoidal nanoparticles by the discrete dipole approximation[J].Journal of Nanomaterials,2012,33:457968.
[16] Lim S H,Mar W,Matheu P,et al.Photocurrent spectroscopy of optical absorption enhancement via scattering from surface plasmon polaritons in gold nanoparticles[J].Journal of Applied Physics,2007,101(10):104309.
[17] Johnson P B,Christy R W.Optical constants of the noble metal[J].Physical Review B,1972,6(12):4370-4379.
[18] Vial A,Grimault A S,Macías D,et al.Improved analytical fit of gold dispersion:application to the modeling of extinction spectra with a finite-difference time-domain method[J].Physical Review B,2005,71(8):085416.

备注/Memo

备注/Memo:
收稿日期:2014-04-09
基金项目:江苏高校优势学科建设工程
作者简介:王坤鹏(1989—),男,江苏阜宁人,硕士,主要研究方向为非晶硅太阳能电池; 冯晓东(联系人),教授,E-mail:xiaodong_feng@126.com.
引用本文:王坤鹏,陈佳男,张玮皓,等.金属纳米粒子对非晶硅太阳能电池性能影响的理论模拟[J].南京工业大学学报:自然科学版,2015,37(2):109-113..
更新日期/Last Update: 2015-07-08