|本期目录/Table of Contents|

[1]彭剑,周昌玉,代巧,等.工业纯钛中低温拉伸行为的温度与应变速率敏感性[J].南京工业大学学报(自然科学版),2015,37(04):50-56.[doi:10.3969/j.issn.1671-7627.2015.04.010]
 PENG Jian,ZHOU Changyu,DAI Qiao,et al.Temperature and strain rate sensitivity of tensile behavior of CP-Ti at low and intermediate temperatures[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(04):50-56.[doi:10.3969/j.issn.1671-7627.2015.04.010]
点击复制

工业纯钛中低温拉伸行为的温度与应变速率敏感性()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
37
期数:
2015年04期
页码:
50-56
栏目:
出版日期:
2015-07-09

文章信息/Info

Title:
Temperature and strain rate sensitivity of tensile behavior of CP-Ti at low and intermediate temperatures
文章编号:
1671-7627(2015)04-0050-07
作者:
彭剑周昌玉代巧贺小华
南京工业大学 机械与动力工程学院,江苏 南京 211800
Author(s):
PENG JianZHOU ChangyuDAI QiaoHE Xiaohua
College of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 211800,China
关键词:
工业纯钛 温度敏感性 应变速率敏感性 本构方程
Keywords:
CP-Ti temperature sensitivity strain rate sensitivity constitutive equation
分类号:
TQ055.8
DOI:
10.3969/j.issn.1671-7627.2015.04.010
文献标志码:
A
摘要:
结合拉伸实验数据和断口形貌分析发现,中低温下工业纯钛的拉伸应力-应变曲线随着温度的升高和应变速率的降低不断降低,拉伸行为存在温度软化与应变速率强化现象,并且拉伸行为的温度敏感性强于应变速率敏感性。基于工业纯钛强度参量随着温度和应变速率的变化规律得到了定量的工业纯钛强度参量与温度和应变速率的关系式。为了定量地描述工业纯钛中低温拉伸应力-应变曲线的温度与应变速率敏感性,对Arrhenius方程、Johnson Cook(JC)方程和Modified Zerilli-Armstrong(MZA)方程在工业纯钛中低温拉伸行为的应用进行比较发现,Arrhenius方程的预测精度最高,MZA方程次之,而JC方程的预测精度最低。
Abstract:
Based on the tensile experimental data and fracture morphology analysis,it was found that with temperature increasing and strain rate decreasing,the stress-strain curve declined.The tensile behavior of CP-Ti was temperature softening and strain rate hardening,and temperature sensitivity of tensile behavior was higher than strain rate sensitivity.Based on the variation of strength parameters of CP-Ti with temperature and strain rate,the correlation equations of strength parameters,temperature and strain rate were obtained.In order to select a reasonable constitutive equation to describe the temperature and strain rate sensitivities of stress strain curve of CP-Ti,the applications of Arrhenius equation,Johnson Cook(JC)equation and Modified Zerilli-Armstrong(MZA)equation on the tensile behavior of CP-Ti at low and intermediate temperatures were compared.It was found that,the Arrhenius equation had the highest prediction accuracy; MZA equation had the second highest prediction; JC equation had the lowest prediction accuracy.

参考文献/References:

[1] Zeng Z,Jonsson S,Roven H J.The effects of deformation conditions on microstructure and texture of commercially pure Ti[J].Acta Materialia,2009,57(19):5822-5833.
[2] Zeng Z,Zhang Y,Jonsson S.Microstructure and texture evolution of commercial pure titanium deformed at elevated temperatures[J].Materials Science and Engineering A,2009,513:83-90.
[3] Zeng Z,Jonsson S,Zhang Y.Constitutive equations for pure titanium at elevated temperatures[J].Materials Science and Engineering A,2009,505(1):116-119.
[4] Zeng Z,Zhang Y,Jonsson S.Deformation behaviour of commercially pure titanium during simple hot compression[J].Materials & Design,2009,30(8):3105-3111.
[5] 马秋林,张莉,徐宏,等.工业纯钛TA2 室温蠕变第1阶段特性研究[J].稀有金属材料与工程,2007,36(1):11-14.
[6] 张莉,徐宏,马秋林,等.工业纯钛TA2的低温蠕变行为[J].稀有金属材料与工程,2009,37(12):2114-2117.
[7] Yamada T,Kawabata K,Sato E,et al.Presences of primary creep in various phase metals and alloys at ambient temperature[J].Material Science and Engineering A,2004,387:719-722.
[8] Matsunaga T,Takahashi K,Kameyama T,et al.Relaxation mechanisms at grain boundaries for ambient-temperature creep of hcp metals[J].Materials Science and Engineering A,2009,510:356-358.
[9] Tanaka H,Yamada T,Sato E,et al.Distinguishing the ambient temperature creep region in a deformation mechanism map of annealed CP-Ti[J].Scripta Mater,2006,54:121-124.
[10] Peng J,Zhou C Y,Dai Q,et al.The temperature and stress dependent primary creep of CP-Ti at low and intermediate temperature[J].Materials Science and Engineering A,2014,611:123-135.
[11] Peng J,Zhou C Y,Dai Q,et al.Fatigue and ratcheting behaviors of CP-Ti at room temperature[J].Materials Science and Engineering A,2014,590:329-337.
[12] Samantaray D,Mandal S,Bhaduri A K,et al.An overview on constitutive modelling to predict elevated temperature flow behaviour of fast reactor structural materials[J].Transactions of the Indian Institute of Metals,2010,63(6):823-831.
[13] Samantaray D,Mandal S,Bhaduri A K.A comparative study on Johnson Cook,modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel[J].Computational Materials Science,2009,47(2):568-576.
[14] Lin Y C,Chen X M.A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J].Materials & Design,2011,32(4):1733-1759.
[15] Li M,Cheng S,Xiong A,et al.Acquiring a novel constitutive equation of a TC6 alloy at high-temperature deformation[J].Journal of Materials Engineering and Performance,2005,14(2):263-266.
[16] Song S X,Horton J A,Kim N J,et al.Deformation behavior of a twin-roll-cast Mg-6Zn-0.5 Mn-0.3 Cu-0.02 Zr alloy at intermediate temperatures[J].Scripta materialia,2007,56(5):393-395.
[17] Huang Y C,Lin Y C,Deng J.Hot tensile deformation behaviors and constitutive model of 42CrMo steel[J].Materials&Design,2014,53:344-356.
[18] Lin Y C,Chen M S,Zhang J.Modeling of flow stress of 42CrMo steel under hot compression[J].Materials Science and Engineering A,2009,499(1):88-92.
[19] Hou Q Y,Wang J T.A modified Johnson-Cook constitutive model for Mg-Gd-Y alloy extended to a wide range of temperatures[J].Computational Materials Science,2010,50(1):147-152.
[20] Wang Y,Zhou Y,Xia Y.A constitutive description of tensile behavior for brass over a wide range of strain rates[J].Materials Science and Engineering A,2004,372(1):186-190.
[21] Vural M,Ravichandran G,Rittel D.Large strain mechanical behavior of 1018 cold-rolled steel over a wide range of strain rates[J].Metallurgical and Materials Transactions A,2003,34(12):2873-2885.
[22] Samantaray D,Mandal S,Bhaduri A K,et al.Analysis and mathematical modelling of elevated temperature flow behaviour of austenitic stainless steels[J].Materials Science and Engineering A,2011,528(4):1937-1943.
[23] Samantaray D,Mandal S,Borah U,et al.A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel[J].Materials Science and Engineering:A,2009,526(1):1-6.
  
[24] Cai M C,Niu L S,Ma X F,et al.A constitutive description of the strain rate and temperature effects on the mechanical behavior of materials[J].Mechanics of materials,2010,42(8):774-781.
[25] ASTM Enternational.Standard test methods for tension of testing of metallic materials[S].West Conshohocken:American Society for Testing and Materials,2011.
[26] Long F W,Jiang Q W,Xiao L,et al.Compressive deformation behaviors of coarse-and ultrafine-grained pure titanium at different temperatures:a comparative study[J].Materials Transactions,2011,52(8):1617-1622.
[27] 陈翔,龚明,夏源明.工业纯钛高温动态拉伸力学行为的微观机制[J].中国科学技术大学学报,2009(6):619-626.
[28] Neeraj T,Hou D H,Daehn G S,et al.Phenomenological and microstructural analysis of room temperature creep in titanium alloys[J].Acta Materialia,2000,48(6):1225-1238.
[29] Shi X Q,Zhou W,Wang Z P,et al.Effect of temperature and strain rate on mechanical properties of 63Sn/37Pb solder alloy[J].Journal of Electronic Packaging,1999,121(3):179-185.
[30] 张朝阳,刘金榕,李瑞,等.Incoloy 800H 高温变形流动应力预测模型[J].金属学报,2011,47(2):191-196.
[31] Rohr I,Nahme H,Thoma K,et al.Material characterisation and constitutive modelling of a tungsten-sintered alloy for a wide range of strain rates[J].International Journal of Impact Engineering,2008,35(8):811-819.

备注/Memo

备注/Memo:
收稿日期:2014-07-14
基金项目:国家自然科学基金(51475223,51075199)
作者简介:彭剑(1987—),男,江苏常州人,博士生,主要研究方向为先进材料与结构的强度与可靠性; 周昌玉(联系人),教授,E-mail:changyu_zhou@163.com.
引用本文:彭剑,周昌玉,代巧,等.工业纯钛中低温拉伸行为的温度与应变速率敏感性[J].南京工业大学学报:自然科学版,2015,37(4):50-56..
更新日期/Last Update: 2015-07-08