|本期目录/Table of Contents|

[1]徐方松,张峰,邢卫红,等.孔径5 nm陶瓷膜对La3+的截留性能[J].南京工业大学学报(自然科学版),2015,37(04):34-39.[doi:10.3969/j.issn.1671-7627.2015.04.007]
 XU Fangsong,ZHANG Feng,XING Weihong,et al.Recovering lanthanum(III)by ceramic ultrafiltration membrane with 5 nm pore size[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(04):34-39.[doi:10.3969/j.issn.1671-7627.2015.04.007]
点击复制

孔径5 nm陶瓷膜对La3+的截留性能()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
37
期数:
2015年04期
页码:
34-39
栏目:
出版日期:
2015-07-09

文章信息/Info

Title:
Recovering lanthanum(III)by ceramic ultrafiltration membrane with 5 nm pore size
文章编号:
1671-7627(2015)04-0034-06
作者:
徐方松张峰邢卫红范益群
南京工业大学 膜科学技术研究所 国家特种分离膜工程技术研究中心,江苏 南京 210009
Author(s):
XU FangsongZHANG FengXING WeihongFAN Yiqun
National Engineering Research Center for Special Separation Membrane, Membrane Science and Technology Research Center,Nanjing Tech University,Nanjing 210009,China
关键词:
陶瓷膜 镧离子 渗透通量 截留率
Keywords:
ceramic membrane La3+ permeate flux rejection rate
分类号:
TQ028.8
DOI:
10.3969/j.issn.1671-7627.2015.04.007
文献标志码:
A
摘要:
采用孔径5 nm陶瓷膜处理冶金、电子、化工等工业产生的含La3+废水,考察离子浓度、电解质和溶液pH等对膜分离性能的影响。结果表明:膜对La3+的截留率随离子浓度的增大而减小,膜通量略有下降。当La3+质量浓度由9.1 mg/L增加到245.0 mg/L时,膜对La3+的截留率从82.4% 降低到66.2%,膜渗透通量下降5%。随NaCl浓度的增大,膜对La3+的截留率降低,而膜渗透通量增大。当NaCl质量浓度增大到100 mg/L时,膜对La3+的截留率从69.3% 减小到26.0%,膜通量则提高30%以上。溶液pH既改变了膜表面荷电性又改变了La在水中的存在形式,对膜分离性能影响显著。当溶液pH<6时,La主要以游离的La3+形式存在; 当pH=10时,La主要以La(OH)3沉淀的形式存在,膜对La3+的截留率大于99%; 当pH=6~8时,部分La(OH)2+的存在,增大了膜孔堵塞阻力,导致膜通量较低。调整溶液pH有助于陶瓷超滤膜回收废水中的La3+,实现资源化利用。
Abstract:
The ceramic membrane with 5 nm pore size was applied to the treatment of wastewater containing La3+ produced from metallurgical,electronics and chemical industries.Effects of ion concentration,electrolyte and solution pH on the separation performance of membrane were investigated.Results showed that with the increase of La3+ concentration,permeate increased and permeate flux decreased.When the La3+ mass concentration increased from 9.1 mg/L to 245.0 mg/L,the rejection rate of La3+ was decreased 82.4% to 66.2%,the flux decreased about 5%.The addition of electrolyte had a drastic adverse effect on the rejection performance of ceramic membrane.With the increase of NaCl concentration,the rejection rate of La3+ decreased and the permeate flux increased.When the NaCl mass concentration was up to 100 mg/L,the rejection rate of La3+ decreased from 69.3% to 26.0%,while the permeate flux increased more than 30%.The pH of the solution influenced the property of the membrane surface charge and changed forms of the lanthanum existence in solution. When pH<6, lanthanum was mostly existed in the form of La3+.It was mostly La(OH)3 precipitates in solution and correspondingly the rejection rate of La3+ was above 99% at pH 10. There was a fraction of La(OH)2+ generated on pH values in the range of 6 to 8,thus increasing the pore blocking resistance and reducing the permeate flux.Adjusting solution pH value could contribute to recovering lanthanum ions in wastewater by ceramic ultrafiltration membrane and realized resourceful utilization.

参考文献/References:

[1] Barakat M A,Schmidt E.Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater[J].Desalination,2010,256(1):90-93.
[2] Palencia M,Rivas B L,Pereira E.Metal ion recovery by polymer-enhanced ultrafiltration using poly(vinyl sulfonic acid):fouling description and membrane-metal ion interaction[J].Journal of Membrane Science,2009,345(1):191-200.
[3] Ahmad A L,Ooi B S.A study on acid reclamation and copper recovery using low pressure nanofiltration membrane[J].Chemical Engineering Journal,2010,156(2):257-263.
[4] Murthy Z V P,Chaudhari L B.Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters[J].Journal of Hazardous Materials,2008,160(1):70-77.
[5] Dialynas E,Diamadopoulos E.Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater[J].Desalination,2009,238(1):302-311.
[6] 曹莹,王昆,李卫星,等.陶瓷超滤膜脱除水中微量Fe3+[J].南京工业大学学报:自然科学版,2013,35(2):46-50.
[7] Bernat X,Pihlajamäki A,Fortuny A,et al.Non-enhanced ultrafiltration of iron(III)with commercial ceramic membranes[J].Journal of Membrane Science,2009,334(1):129-137.
[8] 吴剑,葛秋霞,仲兆祥,等.4 nm 孔径陶瓷膜去除水中钙离子研究[J].水处理技术,2013,39(1):46-54.
[9] Wu D B,Zhao J,Zhang L,et al.Lanthanum adsorption using iron oxide loaded calcium alginate beads[J].Hydrometallurgy,2010,101(1):76-83.
[10] Vijayaraghavan K,Sathishkumar M,Balasubramanian R.Interaction of rare earth elements with a brown marine alga in multi-component solutions[J].Desalination,2011,265(1):54-59.
[11] Li W X,Zhou L Y,Xing W H,et al.Coagulation-microfiltration for lake water purification using ceramic membranes[J].Desalination and Water Treatment,2010,18(1/2/3):239-244.
[12] Wang Z,Liu G C,Fan Z F,et al.Experimental study on treatment of electroplating wastewater by nanofiltration[J].Journal of Membrane Science,2007,305(1):185-195.
[13] Braeken L,van der Bruggen B,Vandecasteele C.Flux decline in nanofiltration due to adsorption of dissolved organic compounds:model prediction of time dependency[J].The Journal of Physical Chemistry B,2006,110(6):2957-2962.
[14] Bandini S,Drei J,Vezzani D.The role of pH and concentration on the ion rejection in polyamide nanofiltration membranes[J].Journal of Membrane Science,2005,264(1):65-74.
[15] Raghu P,Yim C,Iqbal A,et al.Mechanistic study of surface contamination of dielectric oxides using isotope labeling[J].Industrial & Engineering Chemistry Research,2004,43(12):2977-2985.
[16] McCafferty E,Wightman J P.Determination of the surface isoelectric point of oxide films on metals by contact angle titration[J].Journal of Colloid and Interface Science,1997,194(2):344-355.
[17] Moritz T,Benfer S,Arki P,et al.Investigation of ceramic membrane materials by streaming potential measurements[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,195(1):25-33.
[18] Al-Zoubi H,Hilal N,Darwish N A,et al.Rejection and modelling of sulphate and potassium salts by nanofiltration membranes:neural network and Spiegler-Kedem model[J].Desalination,2007,206(1):42-60.
[19] Al-Rashdi B A M,Johnson D J,Hilal N.Removal of heavy metal ions by nanofiltration[J].Desalination,2013,315:2-17.
[20] Zhang Q,Jing W H,Fan Y Q,et al.An improved Parks equation for prediction of surface charge properties of composite ceramic membranes[J].Journal of Membrane Science,2008,318(1/2):100-106.
[21] Kosmulski M.A literature survey of the differences between the reported isoelectric points and their discussion[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003,222(1):113-118.
[22] Childress A E,Elimelech M.Relating nanofiltration membrane performance to membrane charge(electrokinetic)characteristics[J].Environmental Science & Technology,2000,34(17):3710-3716.

相似文献/References:

[1]王文春,史宏,杨刚,等.陶瓷膜净化百草枯合成液[J].南京工业大学学报(自然科学版),2010,32(01):37.
 WANG Wen chun,SHI Hong,YANG Gang,et al.Clarification of synthesized paraquat by ceramic membrane[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2010,32(04):37.
[2]范苏,邱鸣慧,周邢,等.多通道TiO2超滤膜的制备及其在印染废水中的应用[J].南京工业大学学报(自然科学版),2011,33(01):44.[doi:10.3969/j.issn.1671-7627.2011.01.009]
 FAN Su,QIU Minghui,ZHOU Xing,et al.Preparation of multichannel TiO2 ultrafiltration membrane and its application in dyeing wastewater[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2011,33(04):44.[doi:10.3969/j.issn.1671-7627.2011.01.009]
[3]邓唯,邢卫红,范益群.陶瓷膜构型对错流微滤酵母悬浮液性能的影响[J].南京工业大学学报(自然科学版),2011,33(02):47.[doi:10.3969/j.issn.1671-7627.2011.02.011]
 DENG Wei,XING Weihong,FAN Yiqun.Effects of ceramic membrane configuration on the performance of crossflow microfiltration of yeast suspension[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2011,33(04):47.[doi:10.3969/j.issn.1671-7627.2011.02.011]
[4]周邢,邱鸣慧,范益群.湿化学法制备多通道ZrO2超滤膜[J].南京工业大学学报(自然科学版),2011,33(03):78.
 ZHOU Xing,QIU Minghui,FAN Yiqun.Preparation of multichannel ZrO2 ultrafilration membrane with suspension derived from wet chemical synthesis[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2011,33(04):78.
[5]张荟钦,周利跃,刘飞,等.陶瓷膜处理地表水的工艺[J].南京工业大学学报(自然科学版),2011,33(04):20.[doi:10.3969/j.issn.1671-7627.2011.04.005]
 ZHANG Huiqin,ZHOU Liyue,LIU Fei,et al.Purification of surface water by ceramic membrane[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2011,33(04):20.[doi:10.3969/j.issn.1671-7627.2011.04.005]
[6]曹莹,王昆,李卫星,等.陶瓷超滤膜脱除水中微量Fe3+[J].南京工业大学学报(自然科学版),2013,35(02):46.[doi:10.3969/j.issn.1671-7627.2013.02.009]
 CAO Ying,WANG Kun,LI Weixing,et al.Removal of Fe3+ from water solution with ceramic ultrafiltration membrane[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2013,35(04):46.[doi:10.3969/j.issn.1671-7627.2013.02.009]
[7]李鑫,仲兆祥,张峰,等.多孔陶瓷膜的气体渗透模型[J].南京工业大学学报(自然科学版),2013,35(04):48.[doi:10.3969/j.issn.1671-7627.2013.04.010]
 LI Xin,ZHONG Zhaoxiang,ZHANG Feng,et al.Model of gas permeation in porous ceramic membranes[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2013,35(04):48.[doi:10.3969/j.issn.1671-7627.2013.04.010]
[8]徐南平,邢卫红,赵宜江,等.面向应用过程的陶瓷膜设计方法[J].南京工业大学学报(自然科学版),2002,24(01):1.[doi:10.3969/j.issn.1671-7627.2002.01.001]
[9]沈丽明,金江,陈悦.酵母菌悬浊液污染陶瓷膜的清洗[J].南京工业大学学报(自然科学版),2002,24(03):74.[doi:10.3969/j.issn.1671-7627.2002.03.017]
[10]邓仕燕,邢卫红,徐南平.超声场对锆溶胶的影响研究[J].南京工业大学学报(自然科学版),2003,25(01):80.[doi:10.3969/j.issn.1671-7627.2003.01.019]

备注/Memo

备注/Memo:
收稿日期:2014-05-14
基金项目:国家自然科学基金(21125629,21306079); 国家高技术研究发展计划(863计划)(2012AA03A606); 江苏省高校自然科学基金(13KJB530005); 江苏省工业支撑计划(BE2011185)
作者简介:徐方松(1989—),男,山东武城人,硕士,主要研究方向为膜法水处理; 邢卫红(联系人),研究员,E-mail:xingwh@njtech.edu.cn.
引用本文:徐方松,张峰,邢卫红,等.孔径5 nm陶瓷膜对La3+的截留性能[J].南京工业大学学报:自然科学版,2015,37(4):34-39..
更新日期/Last Update: 2015-07-08