|本期目录/Table of Contents|

[1]王小威,巩建鸣,王艳飞,等.统一黏塑性模型对9%-12%Cr马氏体耐热钢低周疲劳特性的数值模拟[J].南京工业大学学报(自然科学版),2014,36(06):72-77.[doi:10.3969/j.issn.1671-7627.2014.06.013]
 WANG Xiaowei,GONG Jianming,WANG Yanfei,et al.Numerical simulation of low cycle fatigue behavior of 9%-12%Cr steel based on unified viscoplastic model[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2014,36(06):72-77.[doi:10.3969/j.issn.1671-7627.2014.06.013]
点击复制

统一黏塑性模型对9%-12%Cr马氏体耐热钢低周疲劳特性的数值模拟()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
36
期数:
2014年06期
页码:
72-77
栏目:
出版日期:
2014-11-21

文章信息/Info

Title:
Numerical simulation of low cycle fatigue behavior of 9%-12%Cr steel based on unified viscoplastic model
文章编号:
1671-7627(2014)06-0072-06
作者:
王小威巩建鸣王艳飞赵燕萍
南京工业大学 机械与动力工程学院,江苏 南京 211800
Author(s):
WANG XiaoweiGONG JianmingWANG YanfeiZHAO Yanping
College of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 211800,China
关键词:
马氏体耐热钢 低周疲劳 Chaboche模型 微观损伤
Keywords:
martensitic heat resistant steel low cycle fatigue Chaboche model microstructural damage
分类号:
TG142.24
DOI:
10.3969/j.issn.1671-7627.2014.06.013
文献标志码:
A
摘要:
9%-12%Cr马氏体耐热钢凭借其优异的综合性能,广泛应用于超超临界发电厂的主要部件。简要地概述了9%-12%Cr钢在循环载荷作用下的微观损伤机制,将材料微观组织演化过程与统一Chaboche黏塑性模型中内变量的变化相关联,应用Chaboche模型预测9%-12%Cr钢中P91钢,在500 ℃时不同应变幅值和不同应变速率条件下的循环应力-应变迟滞回线,将预测结果与已报道的试验数据进行比较,结果表明:不同条件下,该模型可以很好地预测P91钢的循环应力-应变迟滞回线,模型中运动硬化变量X描述材料在循环初期的应变强化现象,各向同性硬化变量R主要描述材料软化现象。
Abstract:
9%-12%Cr steel was widely used as the main components in ultra-supercritical power plant due to its good comprehensive mechanical properties.Microstructural damage mechanisms of 9%-12%Cr under cyclic load were explained. The microstructural damage mechanisms was related to internal state variables in Chaboche model, stress-strain hysteresis loops of P91 steel were predicited by unified Chaboche viscoplastic model at 500 ℃ for different strain amplitudes and strain rates, and the simulation results were compared with experimental results. Results showed that the unified Chaboche model could accurately predict the stress-strain hysteresis loops of P91 steel under different conditions, kinematic hardening variables X described the strain hardening at primary stage, while isotropic variable R was the main factor for controlling the softening behavior.

参考文献/References:

[1] Zinkle S J,Was G S.Materials challenges in nuclear energy[J].Acta Materialia,2013,61(3):735-758.
[2] Shibli A,Starr F.Some aspects of plant and research experience in the use of new high strength martensitic steel P91[J].International Journal of Pressure Vessels and Piping,2007,84(1):114-122.
[3] Mroz Z.On the description of anisotropic work hardening[J].Journal of the Mechanics and Physics of Solids,1967,15(3):163-175.
[4] Robinson D N,Pugh C E,Corum J M.Constitutive equations for describing high-temperature inelastic behavior of structural alloys[R].Tennessee:Oak Ridge National Laboratory,1976.
[5] Chaboche J L.Constitutive equations for cyclic plasticity and cyclic viscoplasticity[J].International Journal of Plasticity,1989,5(3):247-302.
[6] Ohno N.Constitutive modeling of cyclic plasticity with emphasis on ratchetting[J].International Journal of Mechanical Sciences,1998,40(2):251-261.
[7] Yeom J T,Williams S J,Kim I S,et al.Unified viscoplastic models for low cycle fatique behavior of Waspaloy[J].Metals and Materials International,2001,7(3):233-240.
[8] Tong J,Vermeulen B.The description of cyclic plasticity and viscoplasticity of waspaloy using unified constitutive equations[J].International Journal of Fatigue,2003,25(5):413-420.
[9] Kim T W,Kang D H,Yeom J T,et al.Continuum damage mechanics-based creep-fatigue-interacted life prediction of nickel-based superalloy at high temperature[J].Scripta Materialia,2007,57(12):1149-1152.
[10] 石多奇,杨晓光,王延荣.耦合蠕变损伤的 Chaboche 黏塑性本构方程的应用[J].航空动力学报,2005,20(1):60-65.
[11] 张克实,Brocks W.Chaboche 热黏塑性损伤模型的应用研究[J].航空动力学报,2002,17(5):615-622.
[12] Aktaa J,Schmitt R.High temperature deformation and damage behavior of RAFM steels under low cycle fatigue loading:experiments and modeling[J].Fusion Engineering and Design,2006,81(19):2221-2231.
[13] Barrett R A,O’Donoghue P E,Leen S B.An improved unified viscoplastic constitutive model for strain-rate sensitivity in high temperature fatigue[J].International Journal of Fatigue,2013,48:192-204.
[14] Barcelo F,Cozzika T.Creep-fatigue interactions in a 9 Pct Cr-1 Pct Mo martensitic steel:part II.microstructural evolutions[J].Metallurgical and Materials Transactions A,2009,40(2):330-341.
[15] Saad A A,Sun W,Hyde T H,et al.Cyclic softening behaviour of a P91 steel under low cycle fatigue at high temperature[J].Procedia Engineering,2011,10:1103-1108.
[16] Kannan R,Srinivasan V S,Valsan M,et al.High temperature low cycle fatigue behaviour of P92 tungsten added 9Cr steel[J].Transactions of the Indian Institute of Metals,2010,63(2/3):571-574.
[17] Zhang Z,Delagnes D,Bernhart G.Anisothermal cyclic plasticity modelling of martensitic steels[J].International Journal of Fatigue,2002,24(6):635-648.
[18] Mariappan K,Shankar V,Sandhya R,et al.Dynamic strain aging behavior of modified 9Cr-1Mo and reduced activation ferritic martensitic steels under low cycle fatigue[J].Journal of Nuclear Materials,2013,435(1):207-213.
[19] Shankar V,Mariappan K,Nagesha A,et al.Effect of tungsten and tantalum on the low cycle fatigue behavior of reduced activation ferritic/martensitic steels[J].Fusion Engineering and Design,2012,87(4):318-324.
[20] Zhou H W,He Y Z,Zhang H,et al.Influence of dynamic strain aging pre-treatment on the low-cycle fatigue behavior of modified 9Cr-1Mo steel[J].International Journal of Fatigue,2013,47:83-89.
[21] Nagesha A,Kannan R,Sastry G V S,et al.Isothermal and thermomechanical fatigue studies on a modified 9Cr-1Mo ferritic martensitic steel[J].Materials Science and Engineering:A,2012,554:95-104.
[22] Pham M S,Solenthaler C,Janssens K G F,et al.Dislocation structure evolution and its effects on cyclic deformation response of AISI 316L stainless steel[J].Materials Science and Engineering:A,2011,528(7):3261-3269.
[23] Armas A F,Petersen C,Schmitt R,et al.Cyclic instability of martensite laths in reduced activation ferritic/martensitic steels[J].Journal of Nuclear Materials,2004,329:252-256.
[24] Vorpahl C,Möslang A,Rieth M.Creep-fatigue interaction and related structure property correlations of EUROFER97 steel at 550 ℃ by decoupling creep and fatigue load[J].Journal of Nuclear Materials,2011,417(1):16-19.
[25] Armstrong P J,Frederick C O.A mathematical representation of the multiaxial Bauschinger effect,CEGB RD/B/N 731[R].Berkely:Nuclear Laboratories,1966.
[26] Zhan Z L,Tong J.A study of cyclic plasticity and viscoplasticity in a new nickel-based superalloy using unified constitutive equations.Part I:evaluation and determination of material parameters[J].Mechanics of Materials,2007,39(1):64-72.
[27] Saad A A,Hyde C J,Sun W,et al.Thermal-mechanical fatigue simulation of a P91 steel in a temperature range of 400-600 ℃ [J].Materials at High Temperatures,2011,28(3):212-218.
[28] Koo G H,Kwon J H.Identification of inelastic material parameters for modified 9Cr-1Mo steel applicable to the plastic and viscoplastic constitutive equations[J].International Journal of Pressure Vessels and Piping,2011,88(1):26-33.
[29] Necib K,Revel P.Modelisation of mechanical behavior of a grade 12% Cr steel coating material[J].Materials Science and Engineering:A,1997,237(1):126-131.

相似文献/References:

[1]张礼敬,谢济洲.镍基合金疲劳裂纹扩展特性[J].南京工业大学学报(自然科学版),1994,16(04):54.
 Zhang Lijing (Department of Economy and Trade.Nanjina Institute of Chemical Technology,Nanjina.China.0009)Xie Jizhou (Beijing Institute of Aeronautical Materials,Beijina,et al.FATIGUE CRACK PROPAGATION BEHAVIOR OF Ni BASE SUPERALLOY[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),1994,16(06):54.

备注/Memo

备注/Memo:
收稿日期:2013-11-29
基金项目:江苏省普通高校研究生科研创新计划(CXZZ13_0430)
作者简介:王小威(1988—),男,江苏徐州人,博士生,主要研究方向为发电厂高温部件的损伤及寿命预测; 巩建鸣(联系人),教授,E-mail:gongjm@njtech.edu.cn..
更新日期/Last Update: 2014-11-20