|本期目录/Table of Contents|

[1]杨志锋,周昌玉,代巧.基于扩展有限元法的弹塑性裂纹扩展研究[J].南京工业大学学报(自然科学版),2014,36(04):50-57.[doi:10.3969/j.issn.1671-7627.2014.04.010]
 YANG Zhifeng,ZHOU Changyu,DAI Qiao.Elastic-plastic crack propagation based on extended finite element method[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2014,36(04):50-57.[doi:10.3969/j.issn.1671-7627.2014.04.010]
点击复制

基于扩展有限元法的弹塑性裂纹扩展研究()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
36
期数:
2014年04期
页码:
50-57
栏目:
出版日期:
2014-07-01

文章信息/Info

Title:
Elastic-plastic crack propagation based on extended finite element method
文章编号:
1671-7627(2014)04-0050-08
作者:
杨志锋周昌玉代巧
南京工业大学 机械与动力工程学院,江苏 南京 211800
Author(s):
YANG ZhifengZHOU ChangyuDAI Qiao
College of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 211800,China
关键词:
扩展有限元 裂纹扩展 应力强度因 J积分
Keywords:
extended finite element method crack propagation stress intensity factor J-integral
分类号:
O346.1+2
DOI:
10.3969/j.issn.1671-7627.2014.04.010
文献标志码:
A
摘要:
为了得到紧凑拉伸(CT)试样应力强度因子和J积分,分别采用传统有限元法、扩展有限元法以及试验方法对其进行计算。在弹性情况下,扩展有限元法和传统有限元法获得的应力强度因子相近,并且与ASTM E1820—05a解相差很小。在弹塑性情况下,扩展有限元法和传统有限元法获得的应力场和J积分有较大的差别,扩展有限元法得到的J积分相对于传统有限元法的结果与实验值更吻合。结果表明:扩展有限元法由于考虑了裂纹扩展,比传统有限元法可以更加准确合理地模拟弹塑性裂纹扩展。
Abstract:
Stress intensity factor and J-integral of compact tension(CT)specimen were investigated by traditional finite element,extended finite element and experimental methods.The stress intensity factor obtained from extended finite element was nearly the same as that from conventional finite element,and they agreed with the ASTM E1820-05a under the elastic condition.But under elastic-plastic condition,there were great differences in stress field and J-integral acquired from extended finite element and traditional one.The J-integral based on extended finite element was in agreement with the experimental results from traditional finite element.Result showed that the extended finite element was more accurate and reasonable than traditional finite element for the elastic-plastic crack propagation problem,since the crack growth was considered in the extended finite element.

参考文献/References:

[1] Swenson D,Ingraffea A.Modeling mixed mode dynamic crack propagation using finite elements theory and applications[J].Computational Mechanics,1988,3:381-397.
[2] Nakanishi H,Taketomi Y,Wasaki J,et al.Study on fast crack propagation and arrest[J].Nippon Kikai Gakkai Ronbunshu,A Hen/Transactions of the Japan Society of Mechanical Engineers,1998,54:57-63.
[3] Belytschko T,Krongauz Y,Organ D,et al.Meshless methods:an overview and recent developments[J].Computer Methods in Applied Mechanics and Engineering,1996,139:3-47.
[4] Roe K L,Siegmund T.An irreversible cohesive zone model for interface fatigue crack growth simulation[J].Engineering Fracture Mechanics,2003,70:209-232.
[5] Bouvard J L,Chaboche J L,Feyel F.A cohesive zone model for fatigue and creep:fatigue crack growth in single crystal super alloys[J].International Journal of Fatigue,2009,31(5):868-879.
[6] Liu P F,Hou S J,Chu J K.Finite element analysis of postbuckling and delamination of composite laminates using virtual crack closure technique[J].Composite Structures,2011,3(6):1549-1560.
[7] Moes N,Dolbow J,Belytschko T.A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering,1999,46:131-150.
[8] Mariani S,Perego U.Extended finite element method for quasi-brittle fracture[J].International Journal for Numerical Methods in Engineering,2003,58:103-126.
[9] Larsson R,Fagerström M.A framework for fracture modeling based on the material fores concept with XFEM kinematics[J].International Journal for Numerical Methods in Engineering,2005,62:354-381.
[10] Dolbow J,Moës N,Belytschko T.An extended finite element method for modeling crack growth with frictional contact[J].Computer Methods in Applied Mechanics and Engineering,2000,36:235-260.
[11] Laborde P,Pommier J,Renard Y,et al.High-order extended finite element method for cracked domains[J].International Journal for Numerical Methods in Engineering,2005,64:354-381.
[12] Chahine E,Laborde P,Renard Y.A quasi-optimal convergence result for fracture mechanics with XFEM[J].Computes Rendus Mathematigue,2006,342:527-532.
[13] Chang Y,Cheng G J.An extended finite element method(XFEM)study on the effect of reinforcing particles on the crack propagation behavior in a metal-matrix composite[J].International Journal of Fatigue,2012,44:151-156.
[14] Golewski G L,Golewski P,Sadowski T.Numerical modeling crack propagation under Mode Ⅱ fracture in plain concretes containing siliceous fly-ash additive using XFEM method[J].Computational Materials Science,2012,62:75-78.
[15] Prosenjit D,Singh I V,Jayaganthan R.An experimental evaluation of material properties and fracture simulation of cryorolled 7075 Al alloy[J].Journal of Materials Engineering and Performance,2012,21(7):1167-1181.
[16] 茹忠亮,朱传锐,张友良,等.断裂问题的扩展有限元法研究[J].岩土力学,2011,32(7):2171-2176.
[17] 茹忠亮,朱传锐,赵洪波.裂纹扩展问题的改进XFEM算法[J].工程力学,2012,29(7):12-16,23.
[18] 方修君,金峰.基于 ABAQUS 平台的扩展有限元法[J].工程力学,2007,24(7):6-10.
[19] 董玉文,余天堂,任青文.直接计算应力强度因子的扩展有限元法[J].计算力学学报,2008,25(1):72-77.
[20] 余天堂.模拟三维裂纹问题的扩展有限元法[J].岩土力学,2010,31(10):3280-3285.
[21] Liu P F,Zhang B J,Zheng J Y.Finite element analysis of plastic collapse and crack behavior of steel pressure vessels and piping using XFEM[J].Journal of Failure Analysis and Prevention,2012,12:707-718.
[22] ASTM International.Standard test method for measurement of fracture toughness[S].West Conshohocken:American Society for Testing and Materials,2005.
[23] Kim Y J,Shim D J,Huh N S,et al.Plastic limit pressures for cracked pipes using finite element limit analyses[J].International Journal of Pressure Vessels and Piping,2002,79:321-330.
[24] Moes N,Belytschko T.Extended finite element method for cohesive crack growth[J].Engineering Fracture Mechanics,2002,69(7):813-833.
[25] 解得,钱勤,李长安.断裂力学中的数值计算方法及工程应用[M].北京:科学出版社,2009.

相似文献/References:

[1].科技简讯[J].南京工业大学学报(自然科学版),1988,10(04):101.

备注/Memo

备注/Memo:
收稿日期:2013-07-04
基金项目:国家自然科学基金(51075199); 江苏省普通高校研究生科研创新计划(CXZZ11_0341)
作者简介:杨志锋(1987—),男,河南安阳人,硕士,主要研究方向为基于扩展有限元的含裂纹结构极限载荷; 周昌玉(联系人),教授, E-mail: cy_zhou@njtech.edu.cn..
更新日期/Last Update: 2014-07-31