|本期目录/Table of Contents|

[1]李佳佳,赵相玉,杨猛,等.金属氢化物TiH2的储锂特性[J].南京工业大学学报(自然科学版),2014,36(03):7-11.[doi:10.3969/j.issn.1671-7627.2014.03.002]
 LI Jiajia,ZHAO Xiangyu,YANG Meng,et al.Lithium storage characteristics of metal hydride TiH2[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2014,36(03):7-11.[doi:10.3969/j.issn.1671-7627.2014.03.002]
点击复制

金属氢化物TiH2的储锂特性()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
36
期数:
2014年03期
页码:
7-11
栏目:
出版日期:
2014-05-20

文章信息/Info

Title:
Lithium storage characteristics of metal hydride TiH2
文章编号:
1671-7627(2014)03-0007-05
作者:
李佳佳赵相玉杨猛马立群沈晓冬
南京工业大学 材料科学与工程学院,江苏 南京 210009
Author(s):
LI Jiajia ZHAO Xiangyu YANG Meng MA Liqun SHEN Xiaodong
College of Materials Science and Engineering,Nanjing Tech University, Nanjing 210009, China
关键词:
球磨 碳包覆 TiH2/C电极 循环稳定性
Keywords:
mechanical milling carbon coating TiH2/C electrode cycle stability
分类号:
TQ028.8
DOI:
10.3969/j.issn.1671-7627.2014.03.002
文献标志码:
A
摘要:
采用机械球磨对TiH2金属氢化物进行处理,通过X线衍射(XRD)和扫描电子显微镜(SEM)研究不同球磨时间的TiH2粉末的微观结构和形貌,并结合充放电测试进一步探究碳包覆TiH2的储锂特性。结果表明:球磨使TiH2粉末颗粒的尺寸明显减小,经碳包覆后TiH2电极的电化学反应活性明显提高。当球磨时间达到9 h时,TiH2/C电极的电化学性能最好,其首次放电容量高达1 226.9 mA·h/g,从第2次循环开始表现良好的循环稳定性,其50次循环后的容量保持率高达72.9%。50次循环后放电容量为222.5 mA·h/g,比未球磨的放电容量多60.7 mA·h/g。
Abstract:
Metal hydride TiH2 powders were treated by mechanical milling(MM). The structure and morphology of TiH2 powders milled for different periods were characterized by X-ray diffraction(XRD)and scanning electron microscopy(SEM). The lithium storage characteristics of carbon coating TiH2 were studied by galvanostatic charge and discharge tests. Results showed that the particle sizes of TiH2 powders were reduced significantly by MM and electrochemical reaction activity of TiH2 electrodes were improved after carbon coating. The TiH2/C electrode milled for 9 h showed the best electrochemical performance with a high discharge capacity of 1 226.9 mA·h/g at the first discharge cycle. From the second cycle, the TiH2/C electrode milled for 9h demonstrated good cycle stability with a high capacity retention of 72.9% after 50 cycles and displayed a discharge capacity of 222.5 mA·h/g after 50 cycles, it was 60.7 mA·h/g higher than that of the non-milled TiH2 electrode.

参考文献/References:

[1] 吴宇平,万春荣,姜长印,等.锂离子二次电池[M].北京:化学工业出版社,2002.
[2] 吴济今.金属磷化物的锂电化学[D].上海:复旦大学,2009.
[3] 卞亚娟.锂离子电池用负极-多元Li2MTi3O3化合物的电化学特性[D].南京:南京工业大学,2012.
[4] 李雯静.用于锂离子电池的新型负极材料研究[D].上海:复旦大学,2011.
[5] Roberts G A,Cairns E J,Reimer J A.Magnesium silicide as a negative electrode material for lithium-ion batteries[J].Journal of Power Sources,2002,110:424-429.
[6] Xiang J Y,Tu J P,Yuan Y F,et al.Improved electrochemical performance of core-shell CuO/Cu composite prepared by a simple one-step method[J].Electrochemistry Communications,2009,11:262-265.
[7] Li W J,Zhou Y N,Fu Z W.Fabrication and lithium electrochemistry of InSe thin film[J].Applied Surface Science,2011,257(7):2881-2885.
[8] Cui Y H,Xue M Z,Wang X L,et al.InP as new anode material lithium ion batteries[J].Electrochemistry Communications,2009,11(5):1045-1047.
[9] Hanai K,Liu Y,Matsumura T,et al.Electrochemical behavior of the composite anodes consisting of carbonaceous materials and lithium transition-metal nitrides for lithium-ion batteries[J].Solid State Ionics,2008,179(27):1725-1730.
[10] Oumellal Y,Rougier A,Nazri G A,et al.Metal hydrides for lithium-ion batteries[J].Nature Materials,2008,7(11):916-921.
[11] Herbstein F H,Averbach B L.The structure of lithium magnesium solid solutions[J].Acta Metall,1956,4:407-413.
[12] Shi Z,Naik D,Gole J L.Electrochemical properties of Li-Mg alloy electrodes for lithium batteries[J].Journal of Power Sources,2001,92(1/2):70-80.
[13] Park M,Kim Y U,Kim H,et al.Enhancement of the rate capability and cyclability of an Mg/C composite electrode for Li secondary batteries[J].Journal of Power Sources,2006,158(2):1451-1455.
[14] Oumellal Y,Zaïdi W,Bonnet J P,et al.Reactivity of TiH2 hydride with lithium ion:evidence for a new conversion mechanism[J].International Journal of Hydrogen Energy,2012,37(9):7831-7835.
[15] Oumellal Y,Rougier A,Tarascon J M,et al.2LiH+M(M=Mg,Ti):new concept of negative electrode for rechargeable lithium-ion batteries[J].Journal of Power Sources,2009(9),192:698-702.
[16] 杨猛,卞亚娟,赵相玉,等.Li+在尖晶石钛酸盐Li2ZnTi3O8中的电化学行为[J].南京工业大学学报:自然科学版,2012,34(6):18-21.
[17] 李佳佳,赵相玉,马立群,等.球磨对ZnO的结构、形貌和电化学性能的影响[J].无机材料学报,2012,27(6):580-584.
[18] Zhou J B,Rao K P.Structure and morphology evolution during mechanical alloying of Ti-Al-Si powder systems[J].Journal of Alloys and Compounds,2004,384(1/2):125-130.

相似文献/References:

[1]蔡锐,王月芳,邵宗平.LiFePO4锂电池正极材料的共碳包覆和Mn掺杂的改性[J].南京工业大学学报(自然科学版),2012,34(06):1.[doi:doi:10.3969/j.issn.1671-7627.2012.06.001]
 CAI Rui,WANG Yuefang,SHAO Zongping.Electrochemical performances of carbon coated and Mn-doped LiFePO4 cathode material for lithium rechargeable batteries[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2012,34(03):1.[doi:doi:10.3969/j.issn.1671-7627.2012.06.001]
[2]陈云超,余勇,王国静,等.微通道反应器-固相法制备锂离子电池正极材料LiMnPO4/C[J].南京工业大学学报(自然科学版),2017,39(03):16.[doi:10.3969/j.issn.1671-7627.2017.03.004]
 CHEN Yunchao,YU Yong,WANG Guojing,et al.Preparation of LiMnPO4/C cathode material for lithium ion batteries by a microreactor-solid state process[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2017,39(03):16.[doi:10.3969/j.issn.1671-7627.2017.03.004]
[3]余勇,陈云超,王国静,等.微反应器-共沉淀法制备LiCoPO4/C及其电化学性能[J].南京工业大学学报(自然科学版),2017,39(04):26.[doi:10.3969/j.issn.1671-7627.2017.04.005]
 YU Yong,CHEN Yunchao,WANG Guojin,et al.Preparation and electrochemical property of LiCoPO4/C by micro-reactor and co-precipitation method[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2017,39(03):26.[doi:10.3969/j.issn.1671-7627.2017.04.005]

备注/Memo

备注/Memo:
收稿日期:2013-09-06
基金项目:江苏高校优势学科建设工程; 国家自然科学基金(NSFC 51201089)
作者简介:李佳佳(1987—),女,江苏南通人,博士生,主要研究方向为新能源材料; 马立群(联系人),教授,E-mail:maliqun@njtech.edu.cn..
更新日期/Last Update: 2014-05-20